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Abstract

We establish the noiseberg conjecture regarding the Han–Kobayashi region of the Gaussian Z-Interference channel
with Gaussian signaling. We also provide a refined conjecture for the optimality of the HK inner bound with
Gaussian signaling.

1 Introduction

The Gaussian Z-interference channel (GZIC), with non-zero parameter a ∈ R, is a two-user interference
channel defined by

Y1 = X1 + Z1,
Y2 = X2 + aX1 + Z2,

where Xi, Yi, Zi (i = 1, 2) are real random variables, Z1, Z2 ∼ N (0, 1), and X1, X2, Z1, Z2 are mutually
independent. In this paper we assume 0 < |a| < 1, as the capacity for strong interference (|a| ≥ 1)
is known [1, 2]. The key question of interest is a computable characterization of the set of achievable
rate pairs (R1, R2), or the capacity region, in terms of the power constraints Q1, Q2 imposed on X1, X2

respectively.
As shown in [3], from a capacity region perspective, the GZIC can be equivalently formulated as a

degraded interference channel given by

Y1 = X1 + Z1, (1a)
Y2 = X2 +X1 + Z1 + Z2 = X2 + Y1 + Z2, (1b)

where Xi, Yi, Zi (i = 1, 2) are real random variables, Z1 ∼ N (0, N1), Z2 ∼ N (0, N2) (with N1 := 1,
N2 := 1

a2 − 1), and X1, X2, Z1, Z2 are mutually independent. Further the power constraints on X1, X2

become transformed, in this equivalent model, to P1, P2 where P1 = Q1 and P2 = Q2

a2 respectively. For
consistency, we will use the latter model in this paper.

The best single-letter achievable region known for a general two-user interference channel is given
by Han and Kobayashi (HK) [2]. Though there are instances of discrete interference channels [4] for
which the HK achievable region is strictly suboptimal, for the GZIC it is still unknown whether the HK
achievable region (restricted to Gaussian inputs and allowing for power control) represents the capacity
region or not.

Unfortunately, the existing techniques to prove the optimality of jointly Gaussian input distributions
are insufficient to address this question for the HK region (or its multi-letter extensions). In particular,
the monotone path argument of [5] and the subadditivity/doubling argument of [6] for showing opti-
mality of Gaussian input distributions are only applicable when time-sharing (power control) does not
improve a region. For the HK region, it is shown in [7, 8] that HK region with time-sharing between
Gaussian distributions strictly improves over the achievable region without time-sharing. This presents
a fundamental obstacle in showing optimality of Gaussian distributions (with time-sharing). To tackle
this issue, the authors of [9] considered a different functional, namely the Fenchel dual for the weighted
sum-rate expression of the HK achievable region, and showed that establishing Gaussian optimality of
input distributions for the new functional (if established) would imply Gaussian optimality (with time-
sharing) for the original HK region. Gaussian optimality for the new functional is stated as a conjecture
in [9]. This conjecture is sufficient to prove optimality of HK region (with Gaussian signaling and power
control). The conjecture had been shown to hold for some parameter regimes [10].
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However, some counterexamples to the conjecture were recently found in [11]. Nonetheless, the
counterexamples are in a certain parameter regime and do not end up disproving the optimality of the
HK achievable region with Gaussian inputs (see Theorem 5 and Theorem 6 in [11]). Rather, they suggest
the need for a proper refining of the conjecture. Such a refinement is discussed in Section 4. The refined
conjecture is based on the exposed sets of the noiseberg region in [7].

In [7], it was conjectured that a particular scheme obtained using Gaussian signaling and power
control would achieve the capacity region of GZIC. Leaving the optimality of Gaussian signaling aside,
built into [7] was the claim that a particular time-sharing between two schemes (in one of the two
schemes, message was only transmitted to Receiver 1) achieved the upper concave envelope of Han–
Kobayashi bound with Gaussian signaling and it is this claim that we term as the noiseberg conjecture.
The calculations of the slope of the region at the corner points in [12], [13] shows the non-triviality of
computing the Han–Kobayashi region with Gaussian signaling. In this paper, we provide a proof of the
noiseberg conjecture. Following up on the intuition in [7], the authors of [14] claimed to have a proof for
the correctness of the noiseberg conjecture. However, as we show in Section 3, the proof has a gap.

This paper is organized as follows: some background information is given in Section 1.1. The noiseberg
conjecture is formally proven in Section 2. Following that, a refined Gaussian optimality conjecture is
discussed in Section 4.

1.1 Background
For a function f we use Cf to denote the upper concave envelope of f . We use Rn

>0 and Rn
≥0 to denote

the positive and non-negative vectors in Rn respectively.

Definition 1. The Han–Kobayashi achievable region for GZIC, denoted by RHK(P1, P2, N1, N2), is the
set of all rate pairs (R1, R2) ∈ R2

≥0 satisfying

R1 ≤ I(X1;Y1|Q), (2a)
R2 ≤ I(X2;Y2|U1, Q), (2b)

R1 +R2 ≤ I(U1, X2;Y2|Q) + I(X1;Y1|U1, Q), (2c)

and the power constraints

E[X2
1 ] ≤ P1, (3a)

E[X2
2 ] ≤ P2, (3b)

for some p(q)p(u1, x1|q)p(x2|q), where Y1 = X1 + Z1, Y2 = X2 +X1 + Z1 + Z2, and X1, X2, Z1, Z2 are
mutually independent random variables in R with Z1 ∼ N (0, N1) and Z2 ∼ N (0, N2).

Definition 2. The Han–Kobayashi achievable region with Gaussian signaling and power control for
GZIC, denoted by RHK-GS(P1, P2, N1, N2), is the set of all rate pairs (R1, R2) ∈ R2

≥0 such that (2)
and (3) hold with X1 := U1 + V1 for some p(q)p(u1|q)p(v1|q)p(x2|q), where the conditional distributions
p(u1|q), p(v1|q), p(x2|q) are zero-mean scalar Gaussian distributions for each q.

In order to state the noiseberg conjecture, we need the following proposition:

Proposition 1. For λ ≥ 1, let the function fλ,GS : R2
≥0 → R be defined by

fλ,GS(P1, P2) :=
1

2

(
− log(N1) + log(P1 + P2 +N1 +N2)

+ max
0≤P1P≤P1

(
(λ− 1) log(P1P + P2 +N1 +N2) + log(P1P +N1)− λ log(P1P +N1 +N2)

))
. (4)

Then

sup
(R1,R2)∈RHK-GS(P1,P2,N1,N2)

(R1 + λR2) = Cfλ,GS(P1, P2),

where Cf denotes the upper concave envelope of f .

Proof. Since Y2 is a degraded version of Y1, by the data-processing inequality, we have I(U1;Y1|Q) ≥
I(U1;Y2|Q) for any p(q)p(u1, x1|q)p(x2|q). Therefore, for any λ ≥ 1, we obtain

sup
(R1,R2)∈RHK(P1,P2,N1,N2)

(R1 + λR2)
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= sup
p(q), P q

1C ,P q
1P ,P q

2

(
I(U1, X2;Y2|Q) + I(X1;Y1|U1, Q) + (λ− 1)I(X2;Y2|U1, Q)

)
.

With the parameterization U1|Q=q ∼ N (0, P q
1C), V1|Q=q ∼ N (0, P q

1P ), X2|Q=q ∼ N (0, P q
2 ), we have

sup
p(q), P q

1C ,P q
1P ,P q

2

(I(U1, X2;Y2|Q) + I(X1;Y1|U1, Q) + (λ− 1)I(X2;Y2|U1, Q))

= sup
p(q), P q

1C ,P q
1P ,P q

2

(−h(Z1) + h(X1 +X2 + Z1 + Z2|Q)

+ (λ− 1)h(V1 +X2 + Z1 + Z2|Q) + h(V1 + Z1|Q)− λh(V1 + Z1 + Z2|Q))

= sup
p(q), P q

1C ,P q
1P ,P q

2

1

2
EQ

[
− log(N1) + log

(
PQ
1C + PQ

1P + PQ
2 +N1 +N2

)
+ (λ− 1) log

(
PQ
1P + PQ

2 +N1 +N2

)
+ log

(
PQ
1P +N1

)
− λ log

(
PQ
1P +N1 +N2

)]
= sup

p(q), P q
1C ,P q

1P ,P q
2

EQ

[
fλ,GS

(
PQ
1C + PQ

1P , P
Q
2

)]
= Cfλ,GS(P1, P2),

where the suprema are subjected to the constraints P q
1C , P

q
1P , P

q
2 ≥ 0, EQ

[
PQ
1C + PQ

1P

]
≤ P1 and

EQ

[
PQ
2

]
≤ P2, and in the last equality we have used the fact that fλ,GS(P1, P2) is non-decreasing

in both P1 and P2.

Recall that

fλ,GS(P1, P2) =
1

2

(
− log(N1) + log(P1 + P2 +N1 +N2)

+ max
0≤P1P≤P1

(
(λ− 1) log(P1P + P2 +N1 +N2) + log(P1P +N1)− λ log(P1P +N1 +N2)

))
.

The objective of the maximization over P1P is strictly increasing (respectively, strictly decreasing) if and
only if

P2 +N2

P2

(
1 +

N2

P1P +N1

)
> λ (respectively, < λ).

Hence the optimal P1P is unique in [0, P1] and is given by

P ∗
1P :=


0 if (P1, P2) ∈ R1,
P1 if (P1, P2) ∈ R2,
N2(P2+N2)
P2(λ−1)−N2

−N1 if (P1, P2) ∈ R3,

where the regions R1,R2,R3 are defined by (5)-(7) given in the next page. This gives an explicit
expression for fλ,GS(P1, P2) given in (8). Now we can compute the gradient and Hessian of fλ,GS(P1, P2)
as shown in the next page. By inspecting the values and the gradients of fλ,GS at the boundaries, one
can see that fλ,GS is continuously differentiable on R2

>0.
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R1 :=

{
(P1, P2) ∈ R2

≥0 : λ ≥ P2 +N2

P2

(
1 +

N2

N1

)}
, (5)

R2 :=

{
(P1, P2) ∈ R2

≥0 : λ ≤ P2 +N2

P2

(
1 +

N2

P1 +N1

)}
, (6)

R3 :=

{
(P1, P2) ∈ R2

≥0 :
P2 +N2

P2

(
1 +

N2

P1 +N1

)
< λ <

P2 +N2

P2

(
1 +

N2

N1

)}
. (7)

fλ,GS(P1, P2)

=
1

2



log(P1 + P2 +N1 +N2) + (λ− 1) log(P2 +N1 +N2)− λ log(N1 +N2) if (P1, P2) ∈ R1,

− log(N1) + λ log(P1 + P2 +N1 +N2) + log(P1 +N1)− λ log(P1 +N1 +N2) if (P1, P2) ∈ R2,

− log(N1) + log(P1 + P2 +N1 +N2)

+λ log(P2 +N2)− log(P2)− (λ− 1) log(N2) + (λ− 1) log(λ− 1)− λ log(λ) if (P1, P2) ∈ R3.
(8)

Region R1

∂P1
fλ,GS(P1, P2) =

1

2

(
1

P1 + P2 +N1 +N2

)
, (9)

∂P2fλ,GS(P1, P2) =
1

2

(
1

P1 + P2 +N1 +N2
+

λ− 1

P2 +N1 +N2

)
, (10)

Hfλ,GS(P1, P2) =
1

2

( −1
(P1+P2+N1+N2)

2
−1

(P1+P2+N1+N2)
2

−1
(P1+P2+N1+N2)

2
−1

(P1+P2+N1+N2)
2 − λ−1

(P2+N1+N2)
2

)
. (11)

Region R2

∂P1
fλ,GS(P1, P2) =

1

2

(
λ

P1 + P2 +N1 +N2
+

1

P1 +N1
− λ

P1 +N1 +N2

)
, (12)

∂P2
fλ,GS(P1, P2) =

1

2

(
λ

P1 + P2 +N1 +N2

)
, (13)

Hfλ,GS(P1, P2) =
1

2

(
−λ

(P1+P2+N1+N2)
2 − 1

(P1+N1)
2 + λ

(P1+N1+N2)
2

−λ
(P1+P2+N1+N2)

2

−λ
(P1+P2+N1+N2)

2
−λ

(P1+P2+N1+N2)
2

)
. (14)

Region R3

∂P1fλ,GS(P1, P2) =
1

2

(
1

P1 + P2 +N1 +N2

)
, (15)

∂P2
fλ,GS(P1, P2) =

1

2

(
1

P1 + P2 +N1 +N2
+

λ

P2 +N2
− 1

P2

)
, (16)

Hfλ,GS(P1, P2) =
1

2

( −1
(P1+P2+N1+N2)

2
−1

(P1+P2+N1+N2)
2

−1
(P1+P2+N1+N2)

2
−1

(P1+P2+N1+N2)
2 − λ

(P2+N2)
2 + 1

P 2
2

)
. (17)
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The noiseberg conjecture [7] then states:

Conjecture 1 (The Noiseberg Conjecture). Let λ ≥ 1 and fλ,GS be the function defined by (4). Then
for all P1, P2 ≥ 0,

Cfλ,GS(P1, P2) = max
α,P̃

(
αfλ,GS

(
P̃ ,

P2

α

)
+ (1− α)fλ,GS

(
P1 − αP̃

1− α
, 0

))
,

where the maximum is subjected to the constraints P2

P1+P2
≤ α ≤ 1 and 0 ≤ P̃ ≤ P1 + P2 − P2

α .

1.2 Preliminaries
We will state some lemmas that will turn out to be useful in our proofs. The proofs are given in Appendix
A.

Lemma 1. Take a continuous function f : Rn
≥0 → R satisfying

lim
∥x⃗∥→∞

f(x⃗)

∥x⃗∥
= 0. (18)

Then, for any x⃗ one can find n + 1 points z⃗1, · · · , z⃗n+1 and non-negative weights ωi (1 ≤ i ≤ n + 1)
adding up to one such that

Cf(x⃗) =

n+1∑
j=1

ωjf(z⃗j)

and

x⃗−
n+1∑
j=1

ωj z⃗j ∈ Rn
≥0. (19)

Moreover, if f(x1, · · · , xn) is non-decreasing in xi for 1 ≤ i ≤ n, then (19) can be replaced with the
stronger condition

x⃗ =

n+1∑
j=1

ωj z⃗j .

Lemma 2. Take a function f : Rn
≥0 → R that is differentiable with a continuous derivative. Let S be

the set of vectors x⃗ ∈ Rn
>0 for which one can find n+ 1 points z⃗1, · · · , z⃗n+1 (with at least one of z⃗i’s in

the interior of the domain, Rn
>0) and non-negative weights ωi (1 ≤ i ≤ n+1) adding up to one such that

x⃗ =
∑n+1

j=1 ωj z⃗j and

Cf(x⃗) =

n+1∑
j=1

ωjf(z⃗j).

Let Pf be the set of all x ∈ Rn
≥0 where f(x) = Cf(x). Let P ′

f be the intersection of Pf with Rn
>0 (the

interior of the domain). Then, for every x⃗ ∈ S we have

inf
y⃗∈P′

f

[f(y⃗) + ⟨∇f(y⃗), x⃗− y⃗⟩] = Cf(x⃗).

2 Proof of Conjecture 1

From (4), it is clear that fλ,GS(P1, P2) is non-decreasing in P1 and P2. An explicit formula for fλ,GS(P1, P2)
is derived in (8), which shows that this function is continuous in P1 and P2 and has logarithmic growth in
P1 and P2. Then, using Lemma 1 from Section 1.2, we can deduce that every point in the upper concave
envelope of fλ,GS can be written as the convex combination of at most three points in the domain.

The conjecture claims that a convex combination of at most two points is needed to yield the upper
concave envelope. Moreover, these two points have to be of the form(

P̃ ,
P2

α

)
,

(
P1 − αP̃

1− α
, 0

)
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meaning that at most one of the points has P2 > 0. Additionally, the conjecture also imposes some
restrictions on the ranges of P̃ and the weight α. This is what forms the crux of our proof below.

Let us take three points (P q
1 , P

q
2 ) for q = 1, 2, 3 where q in P q

1 is just an index (not P1 raised to the
power q). Corresponding to (P q

1 , P
q
2 ) in the definition of fλ,GS, there is some optimizer P q

1P given by
(4). Let P q

1C = P q
1 −P q

1P ≥ 0. Assuming the weight distribution pQ(q) for q = 1, 2, 3, the upper concave
envelope can be compactly expressed as

Cfλ,GS(P1, P2)

= max
p(q), P q

1C ,P q
1P ,P q

2

1

2
EQ

[
− log(N1) + log

(
PQ
1C + PQ

1P + PQ
2 +N1 +N2

)
+ (λ− 1) log

(
PQ
1P + PQ

2 +N1 +N2

)
+ log

(
PQ
1P +N1

)
− λ log

(
PQ
1P +N1 +N2

)]
(20)

where the maximum is subject to the constraints q ∈ {1, 2, 3}, P q
1C , P

q
1P , P

q
2 ≥ 0, EQ

[
PQ
1P

]
≤ P1,

EQ

[
PQ
1C

]
≤ P1 − EQ

[
PQ
1P

]
and EQ

[
PQ
2

]
≤ P2. Note that we can also write (20) as

1

2
max

p(q), P q
1P

(
− log(N1) + EQ

[
log
(
PQ
1P +N1

)
− λ log

(
PQ
1P +N1 +N2

)]
+ sup

P q
1C ,P q

2

EQ

[
log
(
PQ
1C + PQ

1P + PQ
2 +N1 +N2

)
+ (λ− 1) log

(
PQ
1P + PQ

2 +N1 +N2

)])
. (21)

By considering the inner maximization in (21), Proposition 4 given in Section 2.1 (with the choice of
n = 2, x1q = P q

1C + P q
2 , x2q = P q

2 , c1 = 1, c2 = λ − 1, aq = P q
1P +N1 +N2) yields that any maximizer

must satisfy the following equations:

P q
1C = max{µ− (P q

1P +N1 +N2), 0} −max{ν − (P q
1P +N1 +N2), 0}, (22)

P q
2 = max{ν − (P q

1P +N1 +N2), 0}, (23)

for some µ ≥ ν ≥ 0 such that EQ

[
PQ
1C

]
= P1 − EQ

[
PQ
1P

]
and EQ

[
PQ
2

]
= P2. This is essentially a

layered-water-filling argument.
Next, we show that we can restrict to the case that there is a unique index q such that P q

2 > 0.
To show this, take a maximizer and assume that there are two indices q1 and q2 such that P q1

2 > 0
and P q2

2 > 0. Then, (23) implies that P q1
2 + P q1

1P = P q2
2 + P q2

1P = ν − N1 − N2, and (22) implies that
P q1
1C = P q2

1C = µ− ν. Thus, considering (20), the expression corresponding to q1 equals

− log(N1) + log(µ) + (λ− 1) log(ν) + r(P q1
1P )

where r(x) = log(x+N1)− λ log(x+N1 +N2). A similar statement holds for q2. Next, using the form
of the optimization problem in (20) from Proposition 2 from Section 2.1, we obtain that P q1

1P and P q2
1P

belong to [0, x∗] where x∗ is given in (24). Since r(x) is concave on [0, x∗] (see Lemma 3), if we replace
the two points indexed by q1 and q2 by their average (according to the weight associated to them in
p(q1) and p(q2)), the value of the expression in (20) does not decrease. Thus, we can restrict to the case
that there is a unique index q such that P q

2 > 0.
Next, consider the set of indices q where P q

2 = 0. For these indices, (ignoring the factor 1
2 ) the

expression in (20) becomes

− log(N1) + log(P q
1C + P q

1P +N1 +N2) + log

(
P q
1P +N1

P q
1P +N1 +N2

)
.

Note that the choice of P̃ q
1C = 0, P̃ q

1P = P q
1C+P q

1P , increases the above expression as (x+N1)/(x+N1+N2)
is increasing in x. Thus, without loss of generality we can assume that P q

1C = 0 and the expression in
(20) becomes − log(N1) + log(P q

1P +N1) which is concave in P q
1P . Therefore, replacing all points with

their average point would not decrease the expression in (20). Thus, we can assume that there is only
one index q where P q

2 = P q
1C = 0.

To sum this up, we can assume that we have (at most) one index q1 where P q1
2 > 0, and (at most)

one index q2 where P q2
2 = 0. In the latter case, we must also have P q2

1C = 0. Assume that the weight
associated to q1 is α and the weight associated to q2 is 1− α. Then, from αP q1

2 + (1− α)P q2
2 = P2, we
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obtain P q1
2 = P2

α . Let us denote P q1
1 = P q1

1P +P q1
1C by P̃ . Then, from αP q1

1 + (1−α)P q2
1 = P1, we obtain

P q2
1 = P1−αP̃

1−α . We can parametrize the two points by

(P q1
1 , P q1

2 ) =

(
P̃ ,

P2

α

)
, (P q2

1 , P q2
2 ) =

(
P1 − αP̃

1− α
, 0

)
.

It remains to show that we can restrict to 0 ≤ P̃ ≤ P1 + P2 − P2

α . Note that this inequality also implies
that P2

P1+P2
≤ α. From (22), (23) and P q2

2 = P q2
1C = 0 we deduce that

µ ≤ P q2
1P +N1 +N2 = P q2

1 +N1 +N2 =
P1 − αP̃

1− α
+N1 +N2.

From (22), (23) and P q1
2 > 0 we deduce that

µ = P q1
2 + P q1

1C + P q1
1P +N1 +N2 = P q1

2 + P q1
1 +N1 +N2 =

P2

α
+ P̃ +N1 +N2.

Putting these together gives P2

α + P̃ ≤ P1−αP̃
1−α , or equivalently P̃ ≤ P1 + P2 − P2

α .

2.1 Some useful lemmas
Lemma 3. Let λ > 1. The second derivative of the function r(x) = log(x+N1) − λ log(x+N1 +N2)
is strictly negative for xx∗ and strictly positive for x > x∗ where

x∗ =
N1 +N2 −N1

√
λ√

λ− 1
. (24)

The proof is immediate by taking the second derivative.

Proposition 2. Consider any arbitrary maximizer of (20). If P q
2 > 0 for some q ∈ {1, 2, 3}, then

P q
1P ∈ [0, x∗] where x∗ is given in (24).

Proof. Assume that P q
2 > 0 and P q

1P > x∗ for some q. From Lemma 3, one can find some 0 < ϵ < P q
2

such that log(x+N1)−λ log(x+N1 +N2) is strictly convex on the interval [P q
1P − ϵ, P q

1P + ϵ]. Consider
the following two points: P qa

1C = P qb
1C = P q

1C , P qa
1P = P q

1P − ϵ, P qb
1P = P q

1P + ϵ, P qa
2 = P q

2 + ϵ and
P qb
2 = P q

2 − ϵ, i.e., we are considering two new points by preserving P q
1c and P q

2 + P q
1P and varying

P q
1P . Thus, the objective function is preserved, save for log(P q

1P +N1) − λ log(P q
1P +N1 +N2). If we

replace the point (P q
1P , P

q
1C , P

q
2 ) with these two points (with equal weight), we get a strict increase as

the objective function is strictly convex on the interval [P q
1P − ϵ, P q

1P + ϵ].

Proposition 3 (Water-filling). Let Q be a random variable, aq ≥ 0, and u ≥ 0. Then the maximum

max
xq≥0

EQ[xQ]≤u

EQ[log(xQ + aQ)]

is attained at xq = x∗
q := max{µ∗ − aq, 0} for some µ∗ ≥ 0 satisfying EQ

[
x∗
Q

]
= u.

This is rather well-known and follows (with minor modifications as we are considering expected
values) the proof of Example 5.2 in [15].

Proposition 4 (Layered Water-filling). Let n be a positive integer, Q be a random variable, aq ≥ 0, and
ci, ui ≥ 0 (i = 1, . . . , n). Suppose u1 ≥ · · · ≥ un. Then the maximum

max
x1,q,...,xn,q≥0
x1,q≥···≥xn,q

EQ[xi,Q]≤ui

EQ

[
n∑

i=1

ci log(xi,Q + aQ)

]

is attained at xi,q = x∗
i,q := max{µ∗

i − aq, 0} for some µ∗
1, . . . , µ

∗
n ≥ 0 such that µ∗

1 ≥ · · · ≥ µ∗
n and

EQ

[
x∗
i,Q

]
= ui for i = 1, . . . , n.
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Proof. In view of Proposition 3, the value of the relaxed maximization problem

max
x1,q,...,xn,q≥0
EQ[xi,Q]≤ui

EQ

[
n∑

i=1

ci log(xi,Q + aQ)

]

=

n∑
i=1

ci max
xi,q≥0

EQ[xi,Q]≤ui

EQ[log(xi,Q + aQ)]

is attained at xi,q = x∗
i,q := max{µ∗

i − aq, 0} for some µ∗
1, . . . , µ

∗
n ≥ 0 satisfying EQ

[
x∗
i,Q

]
= ui for

i = 1, . . . , n. Now it remains to show that µ∗
1 ≥ · · · ≥ µ∗

n from which it would follow that x∗
1,q ≥ · · · ≥ x∗

n,q

for all q. This follows from the assumption that u1 ≥ · · · ≥ un, as EQ

[
x∗
i,Q

]
= ui implies

EQ[max{µ∗
1 − aQ, 0}] ≥ · · · ≥ EQ[max{µ∗

n − aQ, 0}].

Combining this with the monotonicity of the function µ 7→ EQ[max{µ− aQ, 0}], we are done.

Remark 1. A physical interpretation of this proposition is: pouring different immiscible liquids into a
decreasing profile and determining the levels of the various liquids in equilibrium.

3 Gap in the proof of [14]

The authors in [14] argue that "Since the scenarios illustrated in Fig. 6(a)(b)(c) are
equivalent to noiseberg cases, it remains to argue that the power allocation scheme
with at spectrum top as in Fig. 6(d) is not optimal. This is because the achievable
rates under such a scheme are formed by convex combinations of points on the curve
of associated broadcast channel capacity, as the flat top requires P1cλ̄

λ̄
= P1cλ

λ . As
the broadcast channel capacity curve is convex, we can only achieve the points on the
chord, which are dominated by the points on the curve corresponding to the scheme with
no frequency division. Thus they are not optimal." This is rather identical to the intuitive
reasoning in [7] while one of the authors proposed the noiseberg region.

The main error with this reasoning is the following: The associated broadcast channel is assumed
to have a total power budget of Pt = P1 + P2. The rate points on the capacity region are of the form
R1 = 1

2 log
(
1 + αPt

N1

)
, R2 = 1

2 log
(
1 + (1−α)Pt

αPt+N1+N2

)
. These rate pairs (since it allows for transmitter

cooperation) constitute an outer bound for the Gaussian Z-interference channel. When (1− α)Pt ≥ P2,
i.e. the power budget for the common message M2 exceeds the power budget for the second transmitter,
one cannot achieve R2 = 1

2 log
(
1 + (1−α)Pt

αPt+N1+N2

)
. (Unfortunately this happens at all points above the

maximum sum-rate point, i.e. essentially the entire regime of interest). One achievable rate-pair for the
interference channel in this case is obtained by assigning the power difference, (1−α)Pt−P2, to be used
by the first transmitter. This leads to the following set of achievable rate pairs when (1 − α)Pt ≥ P2:
R1 = 1

2 log
(
1 + αPt

N1

)
+ 1

2 log
(
1 + (1−α)Pt−P2

P2+αPt+N1+N2

)
, R2 = 1

2 log
(
1 + P2

αPt+N1+N2

)
. These set of points

(R1, R2) are not known to lie on a convex curve and hence the previous argument breakdown.

Remark 2. A moment’s reflection is useful here: were the points on the associated broadcast channel
achievable, then it simultaneously would be an inner bound and outer bound (hence the capacity region).
This is clearly not true as the capacity region has true non-trivial corner points unlike the smooth curve
of the capacity region for the associated broadcast channel.

4 Refinement of the Gaussian optimality conjecture

The noiseberg conjecture states that

Cfλ,GS(P1, P2) = max
α,P̃

(
αfλ,GS

(
P̃ ,

P2

α

)
+ (1− α)fλ,GS

(
P1 − αP̃

1− α
, 0

))
. (25)

Let us define the set Pfλ,GS to be the set of positive pairs (P1, P2) such that the maximum in (25)
is attained at α = 1, i.e., Cfλ,GS(P1, P2) = fλ,GS(P1, P2) and no time-sharing between two points is
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needed in this case. We propose a Gaussian optimality conjecture for power pairs in set Pfλ,GS . This
is an explicit and succinct conjecture about Gaussian optimality consistent with the optimality and
sub-optimality results established in literature so far.

Conjecture 2. Let λ ≥ 1. Take N1, N2 > 0 and some pair (P1, P2) ∈ Pfλ,GS . Let Z1 ∼ N (0, N1I) and
Z2 ∼ N (0, N2I) be independent random variables in Rn. Then the supremum

sup
p(x1)p(x2)

E[∥X1∥2]≤nP1

E[∥X2∥2]≤nP2

((λ− 1)h(X1 +X2 + Z1 + Z2) + h(X1 + Z1)− λh(X1 + Z1 + Z2)),

where X1,X2,Z1,Z2 are mutually independent random variables, is attained by Gaussian X1 and X2

such that the covariance of X2 is a multiple of identity.

Definition 3. The achievable rate obtained by the convex combination αfλ,GS
(
0, P2

α

)
+(1−α)fλ,GS

(
P1

1−α , 0
)
,

for some α ∈ [0, 1], is defined as the time-division rate.

Let S denote the set of model parameters (P1, P2, N1, N2, λ) for which the maximum in (25) is attained
at a point P̃ > 0. Alternately, time-division strategy is not the maximizer for this (P1, P2, N1, N2, λ).

Remark 3. Note that the region S can be explicitly determined by the noiseberg region. For large
classes of channel parameters (P1, P2, N1, N2), one can show that S contains the entire capacity region,
i.e. all λ ≥ 1. However, numerical simulations do indicate that for some special choice of parameters
P̃ = 0 may occur; one such example seems to be N1 = N2 = 1, P1 = 3(1 − t), P2 = 2t and λ =
(ln(1/4) + 3/4)/(ln(1/2) + 1/2) where t ∈ (0, 1) is arbitrary.

Theorem 1. If Conjecture 2 holds, Han–Kobayashi weighted sum-rate is equal to the corresponding
weighted sum-capacity of GZIC for the points in S, where S is defined above.

Proof. Take some arbitrary λ ≥ 1. Let g(P1, P2) be the achievable λ-sum rate sup(R1,R2)(R1 + λR2),
where (R1, R2) is taken over the capacity region of the Z-interference channel (1) with power constraints
E[X2

1 ] ≤ P1 and E[X2
2 ] ≤ P2. Note that g(P1, P2) is concave in (P1, P2); this can be shown by using

time-sharing (power control). Moreover, g(P1, P2) ≥ Cfλ,GS(P1, P2) since g(P1, P2) is the λ-sum rate of
the actual capacity region and is greater than or equal to the value obtained by the HK inner bound
with Gaussian signalling. We need to prove that g(P1, P2) = Cfλ,GS(P1, P2).

Recell that the function fλ,GS(P1, P2) is differentiable with a continuous derivative. The noiseberg
conjecture implies that for any P1, P2 > 0, Cfλ,GS(P1, P2) is the convex combination of two points for
the form

(
P̃ , P2

α

)
and

(
P1−αP̃
1−α , 0

)
. Since the optimal P̃ > 0 for points in S, the pair

(
P̃ , P2

α

)
will be in

the interior and Lemma 2 from Section 1.2 implies that for any x⃗ = (P ∗
1 , P

∗
2 ) ∈ S we have

Cfλ,GS(x⃗) = inf
y⃗∈P′

fλ,GS

[
fλ,GS(y⃗) + ⟨∇fλ,GS(y⃗), x⃗− y⃗⟩

]
, (26)

where P ′
fλ,GS

is the set of points in Pfλ,GS with strictly positive coordinates.
Lemma 4 (given below in this section) shows that if Conjecture 2 holds, then for any (P1, P2) ∈ Pfλ,GS ,

we have g(P1, P2) = fλ,GS(P1, P2). Then, Lemma 5 from Appendix A shows that for any for any
(P1, P2) ∈ P ′

fλ,GS
we have

∇g(P1, P2) = ∇f(P1, P2).

Finally, (26) implies that for any x⃗ = (P ∗
1 , P

∗
2 ) ∈ S we have

Cfλ,GS(x⃗) = inf
y⃗∈P′

fλ,GS

[
fλ,GS(y⃗) + ⟨∇fλ,GS(y⃗), x⃗− y⃗⟩

]
= inf

y⃗∈P′
fλ,GS

[
g(y⃗) + ⟨∇g(y⃗), x⃗− y⃗⟩

]
≥ g(x⃗),

where the last step follows from concavity of g. Since we also had g(x⃗) ≥ Cfλ,GS(x⃗), this completes the
proof.
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Lemma 4. If Conjecture 2 holds, then for any (P1, P2) ∈ Pfλ,GS , we have g(P1, P2) = fλ,GS(P1, P2)
where g(P1, P2) is the achievable λ-sum rate sup(R1,R2)(R1 + λR2) of the capacity region of the Z-
interference channel (1) with power constraints E[X2

1 ] ≤ P1 and E[X2
2 ] ≤ P2.

Proof of Lemma 4. From the scalar case of Theorem 1 of [9], it follows that the covariance of the optimal
X1 is also a multiple of the identity. In such case, the covariance of the optimal X1 and X2 are P̂1I and
P2I, respectively, for some 0 ≤ P̂1 ≤ P1. Then a standard application of Fano’s inequality gives that for
any sequence of codebooks (X1,X2) of rate (R1, R2) satisfying the power constraints E[∥X1∥2] ≤ nP1

and E[∥X2∥2] ≤ nP2, whose average probability of error goes to zero, there exists a sequence ϵn ≥ 0 such
that ϵn → 0 and

R1 + λR2 − ϵn

≤ 1

n
(I(X1;X1 + Z1) + λI(X2;X1 +X2 + Z1 + Z2))

=
1

n
(−h(Z1) + h(X1 +X2 + Z1 + Z2)

+ (λ− 1)h(X1 +X2 + Z1 + Z2) + h(X1 + Z1)− λh(X1 + Z1 + Z2))

≤ 1

2

(
− log(N1) + log(P1 + P2 +N1 +N2)

+ max
0≤P̂1≤P1

(
(λ− 1) log

(
P̂1 + P2 +N1 +N2

)
+ log

(
P̂1 +N1

)
− λ log

(
P̂1 +N1 +N2

)))
= fλ,GS(P1, P2).

5 Conclusion

In this paper, we proved the noiseberg conjecture of [7], which simplifies the calculation of the HK
achievable region with Gaussian signaling to a two-variable optimization problem involving α and P̃
given in (25). The intuitive notion is that pushing noise above the surface level frees up prime (low SNR)
space for the signals that matter in the lower portions of the spectrum. The mathematical reasoning
is that time or frequency division does a linear combination of two modes of operation, one of pure
superposition and another where the second transmitter is silent. This leads to an achievable point
in the concave envelope of the surfaces, otherwise unattainable without the zipline-style connection.
Specifically, we considered two classes of model parameters in the conjecture, (i) when the optimizer
satisfies α = 1 and (ii) when the optimizer satisfies P̃ > 0. Then, we considered a refined form of
the Gaussian optimality conjecture of [9] when we restrict to class (i) and showed that it implies a
characterization of the capacity region for class (ii). Finding a closed-form expression for class (i) and
class (ii) of parameters is left as future work.
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A Properties of the convex envelope and convex functions

Proof of Lemma 1. Take some point x⃗. Consider the compact set ∥r⃗∥ ≤ L for some L > ∥x⃗∥. Let CLf(x⃗)
be the upper concave envelope of f when we restrict the domain to vectors r⃗ satisfying ∥r⃗∥ ≤ L. By
Caratheodery’s theorem, one can write

CLf(x⃗) =

n+1∑
j=1

ωL,jf(z⃗L,j)

for some points z⃗L,j ∈ Rn
≥0 and weights ωL,j for 1 ≤ j ≤ n+ 1 satisfying

x⃗ =

n+1∑
j=1

ωL,j z⃗L,j . (27)

Note that (27) implies that the non-negative vector z⃗L,j is coordinatewise less than or equal to x⃗/ωL,j .
Therefore,

∥z⃗L,j∥ ≤ ∥x⃗∥
ωL,j

. (28)

For each L, the tuple (ωL,1, ωL,2, · · · , ωL,n+1) lies in the probability simplex on n+1 variables. There-
fore as we let L tend to infinity, we can find a convergent subsequence, i.e., for a sequence (L1, L2, · · · )
where Li → ∞, the sequence (ωLi,1, ωLi,2, · · · , ωLi,n+1) converges to some (ω∗

1 , ω
∗
2 , · · · , ω∗

n+1).
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Let J be the set of indices j where ω∗
j > 0. Note that for such a j ∈ J , the length of ∥z⃗Li,j∥ will

remain bounded from (28). Therefore, by taking a convergent subsequent, without loss of generality we
can assume that the sequence z⃗Li,j converges to a limit vector z⃗∗j for any j ∈ J .

Next, take some j where ω∗
j = 0. We claim that

lim
i→∞

ωLi,jf(z⃗Li,j) = 0. (29)

If z⃗Li,j remains bounded as i tends to infinity, (29) holds. Otherwise, we have a subsequence where
∥z⃗Li,j∥ tends to infinity. Thus, without loss of generality we can assume that limi→∞ ∥z⃗Li,j∥ = ∞. In
this case,

lim
i→∞

ωLi,jf(z⃗Li,j) = ∥x⃗∥ · lim
i→∞

f(z⃗Li,j)
∥x⃗∥
ωLi,j

(30)

≤ ∥x⃗∥ · lim
i→∞

f(z⃗Li,j)

∥z⃗Li,j∥
(31)

= 0, (32)

where we used (18) and (28).
Therefore, by taking the limit as i goes to infinity and using (29) we obtain

Cf(x⃗) =
∑
j∈J

ω∗
j f(z⃗

∗
j ) (33)

for some points z⃗∗j ∈ Rn
≥0 and positive weights ω∗

j for 1 ≤ j ≤ r satisfying

x⃗ ≥
∑
j∈J

ω∗
j z⃗

∗
j . (34)

This completes the proof for the first part of the lemma. If f is non-decreasing in its coordinates, by
increasing z∗j in (34), we can make it hold with equality. Moreover, the right hand side of (33) will not
decrease.

Remark 4. The above proof is similar to (and motivated by) an argument in the Appendix [6].

Proof of Lemma 2. Since Cf = f on P ′
f , and f is differentiable in the interior of the domain, from

Lemma 5 we deduce that ∇(Cf)(y⃗) = ∇f(y⃗) for every y⃗ ∈ P ′
f .

Therefore, for any arbitrary x⃗ we have

inf
y⃗∈P′

f

[f(y⃗) + ⟨∇f(y⃗), x⃗− y⃗⟩]

= inf
y⃗∈P′

f

[Cf(y⃗) + ⟨∇(Cf)(y⃗), x⃗− y⃗⟩]

≥ Cf(x⃗). (35)

where in the last step we used the concavity of Cf . It remains to show that for any x⃗ ∈ S we have

inf
y⃗∈P′

f

[f(y⃗) + ⟨∇f(y⃗), x⃗− y⃗⟩] ≤ Cf(x⃗).

Take some arbitrary x⃗ ∈ S. It suffices to identify some y⃗ ∈ P ′
f such that

f(y⃗) + ⟨∇f(y⃗), x⃗− y⃗⟩ ≤ Cf(x⃗). (36)

Since x⃗ ∈ S one can find r ≤ n + 1 points z⃗1, · · · , z⃗r and positive weights ωi (1 ≤ i ≤ r) adding up to
one such that

Cf(x⃗) =

r∑
j=1

ωjf(z⃗j) (37)
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and

x⃗ =

r∑
j=1

ωj z⃗j .

Moreover, z⃗j is in the interior of the domain for some j.
We claim that zj ∈ Pf for any 1 ≤ j ≤ r. To show this, observe that

r∑
j=1

ωjCf(z⃗j) ≤ Cf(x⃗) =

r∑
j=1

ωjf(z⃗j) (38)

≤
r∑

j=1

ωjCf(z⃗j)

where (38) follows from concavity of Cf and (37). Thus, Cf(z⃗j) = f(z⃗j) for all 1 ≤ j ≤ r.
Next, take some small ϵ > 0. We have

Cf(x⃗) ≥
r∑

j=1

ωjf(z⃗j + ϵ(x⃗− z⃗j))

=

r∑
j=1

ωj

[
f(z⃗j) + ϵ⟨∇f(z⃗j), x⃗− z⃗j)⟩+ o(ϵ)

]
= Cf(x⃗) +

r∑
j=1

ωj

[
ϵ⟨∇f(z⃗j), x⃗− z⃗j)⟩+ o(ϵ)

]
Thus,

r∑
j=1

ωj

[
⟨∇f(z⃗j), x⃗− z⃗j)⟩

]
≤ 0.

Consequently,

Cf(x⃗) ≥
r∑

j=1

ωj

[
f(z⃗j) + ⟨∇f(z⃗j), x⃗− z⃗j)⟩

]
.

On the other hand, since zj ∈ Pf , from (35), we have that

Cf(x⃗) ≤ f(z⃗j) + ⟨∇f(z⃗j), x⃗− z⃗j)⟩.

This implies that for any j

Cf(x⃗) = f(z⃗j) + ⟨∇f(z⃗j), x⃗− z⃗j)⟩.

Thus, we can choose the zj that lies in the interior of the domain as evidence for (36).

Lemma 5. For two functions f and g assume that

1. f(y⃗) ≤ g(y⃗) for all vectors y⃗,

2. g(·) is concave,

3. f(x⃗) = g(x⃗) for some vector x.

Then, ∂g(x⃗) ⊆ ∂f(x⃗) where ∂g(x⃗) and ∂f(x⃗) are the sets of sub-gradients of f and g respectively at x⃗.

Proof. Take an arbitrary sub-gradient vector v⃗ ∈ ∂g at x⃗. Then, for any y⃗ we have

f(x⃗) + ⟨v⃗, y⃗ − x⃗⟩ = g(x⃗) + ⟨v⃗, y⃗ − x⃗⟩ (39)
≥ g(y⃗) (40)
≥ f(y⃗), (41)

where (39) holds because of assumption 3, (40) holds because of assumption 2 and (41) holds because of
assumption 1. This shows that v⃗ ∈ ∂f at x⃗.


