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Abstract—In this paper we derive an inequality relating linear
combinations of mutual information between subsets of mutually
independent random variables and an auxiliary random variable.
One choice of a family of auxiliary variables leads to a new
proof of a Stam-type inequality regarding the Fisher Information
of sums of independent random variables. Another choice of a
family of auxiliary random variables leads to new results as
well as new proofs of results relating to strong data processing
constants and maximal correlation between sums of independent
random variables. Other results obtained include convexity of
Kullback–Leibler divergence over a parameterized path along
pairs of binomial and Poisson distributions, as well as a new
duality-based argument relating the Stam-type inequality and
entropy power inequality.

Index Terms—Mutual information, monotonicity of entropy
power, Stam’s inequality, strong data processing, maximal cor-
relation

I. INTRODUCTION

IN this paper we obtain an information inequality relating
linear combinations of mutual information between subsets

of mutually independent random variables and an auxiliary
random variable. Our main result is a rather elementary su-
permodularity inequality which surprisingly implies a variety
of non-trivial inequalities and yields new inequalities. We are
directly motivated by the work of Balister and Bollobás [1]
who present generalizations of Shearer’s lemma [2], [3], Han’s
inequality [4], and the Madiman–Tetali inequality [5]. We
obtain a compression type inequality similar to Theorem 4.2
of [1], generalizing the work in [6]. We are also motivated by
the work of Courtade [7] who presents an elementary proof of
monotonicity of entropy power and Fisher information which
was originally established by Artstein, Ball, Barthe and Naor
[8]. Along these lines, [9] gave an estimate of the scaled sums
of mutually independent and identically distributed random
variables, based on the second largest eigenvalue of the
operator associated with maximal correlation. This work is
also partly motivated by a comment in [9] that wishes for an
extension of the technique to independent but non-identically
distributed random variables. Using a certain perturbative aux-
iliary, we recover the generalized Stam’s inequality [10], which
extends Stam’s inequality for Fisher information [11] and
the Artstein–Ball–Barthe–Naor inequality [8], as a corollary
of our main result. We also extend the results involving
maximal correlation by Dembo–Kagan–Shepp [12], strong
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data processing constants in [6], and obtain new Kullback–
Leibler (KL) divergence convexity results.

There is a very large body of work on information inequal-
ities (including entropy power inequalities) and a complete
literature review is beyond the scope of this article. Below,
we present an incomplete list of references that an inter-
ested reader may want to peruse. A survey of non-traditional
techniques for proving information inequalities is presented
in [13]. A survey of different versions of entropy power
inequalities (forward and reverse) for Shannon entropy and
Rényi entropy is presented in [14]. Strong data processing
inequality constants and inequalities are given a very nice
treatment in [15]. Recent works on information inequalities
exploiting submodularity can be found in [16]–[18].

A. Organization of the paper

The results of this paper stem from a rather immediate
supermodularity inequality concerning an auxiliary random
variable and two independent random variables. The com-
pression operation, as used in [1], is then applied to extend
this “two-point” inequality to larger families of inequalities.
Further we use the notion of layered function family to extend
these inequalities from random vectors to functions of random
vectors. All of the above ideas are presented in Section II-A.
Two families of perturbative auxiliaries will turn out to be
useful in deriving several of our corollaries. These two families
and certain estimates of them will be discussed in Section II-B.
In Section III-A, we combine the first two ideas to give a novel
proof of a generalized Stam’s inequality involving fractional
partitions, first obtained in [19] (see Theorem 1). Unlike the
case of two independent variables, the proof in [19] that linked
the generalized Stam’s inequality and a corresponding one
showing the fractional superadditivity of EPI is quite non-
trivial. In Section III-A2, we show a convex duality based
argument that gives a rather immediate (and new) proof of
this implication, and makes it quite similar to the two variable
case.

In Section III-B, we restrict ourselves to independent and
identically distributed random variables and derive certain
discrete convexity results. Using this, we generalize some
results concerning strong data processing constants, maximal
correlation, and KL divergence. Finally in Section IV we lay
some groundwork for future work involving some connections
to sumset inequalities.

Notation: We denote by [a : b] the set of integers ≥ a
and ≤ b. We denote by |T | the cardinality of a set T . For
random variables X1, . . . , Xn and for T ⊆ [1 : n], we write
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XT := {Xi}i∈T , the tuple consisting of Xi where i ∈ T . For
a positive integer d, we denote by ‖ · ‖ the Euclidean norm on
Rd.

II. MAIN

A. Preliminaries

Definition 1. Let n be a positive integer. An n-fractional
multiset {αT }T is a finite sequence of non-negative real
numbers αT indexed by T ⊆ [1 : n].

Remark 1. The notion of n-fractional multisets is not new
and has been used in [1] where the authors call n-fractional
multisets to be “multisets of subsets of [n]”. On the other hand,
we view an n-fractional multiset as the finite sequence of its,
potentially fractional, multiplicities.

Definition 2. Let n be a positive integer and let
{αT }T , {βT }T be two n-fractional multisets. We call {βT }T
an elementary compression of {αT }T if there exist A,B ⊆
[1 : n] with A 6⊆ B and B 6⊆ A, and 0 < δ ≤ min{αA, αB}
such that for all T ⊆ [1 : n] we have

βT =


αT − δ if T = A or T = B,
αT + δ if T = A ∪B or T = A ∩B,
αT otherwise.

The result of a finite sequence of elementary compressions of
{αT }T is called a compression of {αT }T .

As studied in [1], the relation “is a compression of” defines
a partial order on the collection of n-fractional multisets. It
is immediate that an n-fractional multiset {βT }T is minimal
under this partial order (i.e. cannot be further compressed) if
and only if the set {T ⊆ [1 : n] : βT 6= 0} is totally ordered
under set inclusion.

The following lemma, a supermodularity inequality, is rather
immediate but forms the basis of most of the results in this
paper.

Lemma 1. Let X1, . . . , Xn be random variables that are mu-
tually independent conditioned on a random variable S∅, and
let U be any auxiliary random variable. Then the following
hold:

(i) I(U ;S∅, XA) + I(U ;S∅, XB) ≤ I(U ;S∅, XA∪B) +
I(U ;S∅, XA∩B) for all A,B ⊆ [1 : n].

(ii)
∑
T⊆[1:n] αT I(U ;S∅, XT ) ≤

∑
T⊆[1:n] βT I(U ;S∅, XT ),

for any n-fractional multisets {αT }, {βT } such that {βT }
is a compression of {αT }.

(iii)
∑
T⊆[1:n] βT I(U ;S∅, XT ) ≤ I(U ;S∅, X[1:n]) + (c −

1)I(U ;S∅), where {βT } is an n-fractional multiset sat-
isfying

∑
T⊆[1:n]:T3i βT ≤ 1 for all i = 1, . . . , n, and

c :=
∑
T⊆[1:n] βT .

Proof. Suppose A,B ⊆ [1 : n]. Then

I(U ;S∅, XB)− I(U ;S∅, XA∩B)

= I(U ;XB\A|S∅, XA∩B)

≤ I(U,XA\B ;XB\A|S∅, XA∩B)
(a)
= I(U,XA\B ;XB\A|S∅, XA∩B)

− I(XA\B ;XB\A|S∅, XA∩B)

= I(U ;XB\A|S∅, XA)

= I(U ;S∅, XA∪B)− I(U ;S∅, XA),

where (a) holds by the mutual independence of the Xi’s
conditioned on S∅. Rearranging gives

I(U ;S∅, XA) + I(U ;S∅, XB)

≤ I(U ;S∅, XA∪B) + I(U ;S∅, XA∩B),

which is (i).
If {βT } is an elementary compression of {αT }, then the

inequality in (ii) follows from (i) by canceling like terms on
both sides. Since a compression is obtained as a sequence of
elementary compressions, (ii) follows.

We will show (iii) by induction on n. Indeed the base case
n = 1 is trivial. Note that (i) gives

I(U ;S∅, X[1:n−1]) + I(U ;S∅, XT∪{n})

≤ I(U ;S∅, X[1:n]) + I(U ;S∅, XT )

for all T ⊆ [1 : n − 1]. Suppose βT (T ⊆ [1 : n]) are non-
negative real numbers satisfying

∑
T⊆[1:n]:T3i βT ≤ 1 for all

i = 1, . . . , n. Then∑
T⊆[1:n]

βT I(U ;S∅, XT )

=
∑

T⊆[1:n−1]

(
βT I(U ;S∅, XT ) + βT∪{n}I(U ;S∅, XT∪{n})

)
≤

∑
T⊆[1:n−1]

(
βT I(U ;S∅, XT ) + βT∪{n}(I(U ;S∅, X[1:n])

− I(U ;S∅, X[1:n−1]) + I(U ;S∅, XT ))
)

(a)
≤ I(U ;S∅, X[1:n])− I(U ;S∅, X[1:n−1])+∑
T⊆[1:n−1]

(βT + βT∪{n})I(U ;S∅, XT )

(b)
≤ I(U ;S∅, X[1:n])− I(U ;S∅, X[1:n−1])

+ I(U ;S∅, X[1:n−1]) + (c− 1)I(U ;S∅)

= I(U ;S∅, X[1:n]) + (c− 1)I(U ;S∅),

where (a) holds since
∑
T⊆[1:n−1] βT∪{n} ≤ 1, and (b) follows

by applying the induction hypothesis to the non-negative real
numbers

{
βT + βT∪{n}

}
T⊆[1:n−1].

Definition 3. Let Xi (i = 1, . . . , n) and ST (T ⊆ [1 : n]) be
random variables. We call {ST }T a layered function family
on X1, . . . , Xn if S∅ is independent of X[1:n], and for every
non-empty T ⊆ [1 : n] and i ∈ T there is a function gT,i such
that ST = gT,i(ST\{i}, Xi).

Remark 2. Clearly a trivial example of a layered function
family is given by ST := (S∅, XT ). A canonical example of a
layered function family is given by ST := S∅+

∑
i∈T fi(Xi),

where fi’s are functions taking values in some Abelian monoid
(i.e. a set with a binary operation, which we denote by +, that
is associative and commutative, and has an identity element).
In particular,

(i) ST := S∅ +
∑
i∈T Xi, where S∅, Xi ∈ Rd;
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(ii) ST := max({S∅} ∪ {Xi}i∈T ), where S∅, Xi ∈ R;
are examples of layered function families.
Remark 3. Layered function families play a similar role as
that of partition-determined functions in [20] and it may be
possible that they are intrinsically trying to capture a similar
behaviour and dependence structure. For our results, we prefer
to stick with the definition of layered function families. Note
that [20] deals with dependent random variables while here
our main focus is on mutually independent random variables.

Lemma 2. Let {ST }T be a layered function family on
mutually independent random variables X1, . . . , Xn. Suppose
U → S[1:n] → (S∅, X[1:n]) forms a Markov chain. Then the
following hold:

(i) U → ST → (S∅, XT ) forms a Markov chain for all
T ⊆ [1 : n].

(ii) I(U ;ST ) = I(U ;S∅, XT ) for all T ⊆ [1 : n].

Proof. Suppose T ⊆ [1 : n]. Consider

0
(a)
= I(U ;S∅, X[1:n]|S[1:n])

= I(U ;S∅, XT , X[1:n]\T |S[1:n])
(b)
= I(U ;S∅, XT , X[1:n]\T , ST |S[1:n])

≥ I(U ;S∅, XT |S[1:n], X[1:n]\T , ST )
(c)
= I(U ;S∅, XT |X[1:n]\T , ST )
(d)
= I(U ;S∅, XT |X[1:n]\T , ST ) + I(X[1:n]\T ;S∅, XT |ST )
= I(U,X[1:n]\T ;S∅, XT |ST )
≥ I(U ;S∅, XT |ST )
≥ 0,

where (a) holds since U → S[1:n] → (S∅, X[1:n]) forms a
Markov chain, (b) holds since ST is a function of (S∅, XT ),
(c) holds since S[1:n] is a function of (ST , X[1:n]\T ), and (d)
holds since X[1:n]\T and (S∅, XT , ST ) are independent. This
shows (i). Furthermore,

I(U ;ST )
(a)
= I(U ;ST , S∅, XT )
(b)
= I(U ;S∅, XT ),

where (a) holds since U → ST → (S∅, XT ) forms a Markov
chain, and (b) holds since ST is a function of (S∅, XT ). This
shows (ii).

We now state the main theorem. The proof is an immediate
application of Lemma 2 to Lemma 1.

Theorem 1. Let {ST }T be a layered function family on
mutually independent random variables X1, . . . , Xn. Suppose
U → S[1:n] → (S∅, X[1:n]) forms a Markov chain. Then the
following hold:

(i) I(U ;SA) + I(U ;SB) ≤ I(U ;SA∪B) + I(U ;SA∩B) for
all A,B ⊆ [1 : n].

(ii)
∑
T⊆[1:n] αT I(U ;ST ) ≤

∑
T⊆[1:n] βT I(U ;ST ), for any

n-fractional multisets {αT }, {βT } such that {βT } is a
compression of {αT }.

(iii)
∑
T⊆[1:n] βT I(U ;ST ) ≤ I(U ;S[1:n]) + (c− 1)I(U ;S∅),

where {βT } is an n-fractional multiset satisfying

∑
T⊆[1:n]:T3i βT ≤ 1 for all i = 1, . . . , n, and c :=∑
T⊆[1:n] βT .

It turns out that the freedom in choosing the auxiliary
random variable U plays a rather important role in the de-
velopment of the inequalities.

B. Two families of perturbative auxiliaries

In this section we will present two families of auxiliaries
that will turn out to be useful for obtaining corollaries to
Theorem 1.

Lemma 3. Let {ST }T be a layered function family on
mutually independent random variables X1, . . . , Xn. Suppose
f is an Rd-valued bounded measurable function, defined on
the set of values of S[1:n], such that E[f(S[1:n])] = 0. Then
there exists a family of random variables {U (ε)}ε, indexed by
small enough ε > 0, such that U (ε) → S[1:n] → (S∅, X[1:n])
forms a Markov chain and

I(U (ε);ST ) =
1

2
ε2 E[‖E[f(S[1:n])|ST ]‖2] +O(ε3)

for all T ⊆ [1 : n].

Proof. Let p̃(·) be the probability mass function of the uniform
distribution on the Boolean hypercube {±1}d. For small
enough ε > 0, define the random variable U (ε) taking values
in {±1}d, satisfying the Markov chain U (ε) → S[1:n] →
(S∅, X[1:n]), according to

pU(ε)|S[1:n]
(u|s) := p̃(u)(1 + ε〈f(s), u〉).

Note that pU(ε)(u) = p̃(u) (which follows from E[f(S[1:n])] =

0), E[U (ε)] = 0 and E[U (ε)U (ε)ᵀ] = I . For any T ⊆ [1 : n],
since U (ε) → S[1:n] → ST forms a Markov chain,

pU(ε)|ST (u|ST ) = E[pU(ε)|S[1:n]
(u|S[1:n])|ST ]

= p̃(u)(1 + ε〈E[f(S[1:n])|ST ], u〉).

Then we have

I(U (ε);ST )

= EU(ε),ST

[
log

p(U (ε)|ST )
p(U (ε))

]
= EU(ε),ST

[
log(1 + ε〈E[f(S[1:n])|ST ], U (ε)〉)

]
= EST

[∑
u

p̃(u)(1 + ε〈E[f(S[1:n])|ST ], u〉)

log(1 + ε〈E[f(S[1:n])|ST ], u〉)
]

= EST

[∑
u

p̃(u)
(
ε〈E[f(S[1:n])|ST ], u〉

+
1

2
ε2〈E[f(S[1:n])|ST ], u〉2 +O(ε3)

)]
=

1

2
ε2 tr

(
E[E[f(S[1:n])|ST ] E[f(S[1:n])|ST ]ᵀ]

·
∑
u

p̃(u)uuᵀ
)
+O(ε3)

=
1

2
ε2 E[‖E[f(S[1:n])|ST ]‖2] +O(ε3).



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. ??, NO. ??, MONTH YEAR 4

Lemma 4. Let {ST }T be a layered function family on
mutually independent random variables X1, . . . , Xn. Suppose
q(·) is a distribution that is absolutely continuous and has
a bounded Radon–Nikodym derivative with respect to the
distribution of S[1:n]. Then there exists a family of random
variables {U (ε)}ε, indexed by small enough ε > 0, such that
U (ε) → S[1:n] → (S∅, X[1:n]) forms a Markov chain and

I(U (ε);ST ) = εDKL(pS̃T ‖pST ) +O(ε2)

for all T ⊆ [1 : n], where the random variable S̃T is defined
by

pS̃T (s̃) :=
∑
s

pST |S[1:n]
(s̃|s)q(s).

Proof. Let f(s) := q(s)/pS[1:n]
(s) be the Radon–Nikodym

derivative. For small enough ε > 0, define the random variable
U (ε) taking values in {0, 1}, satisfying the Markov chain
U (ε) → S[1:n] → (S∅, X[1:n]), according to

pU(ε)|S[1:n]
(u|s) :=

{
1− εf(s) if u = 0,
εf(s) if u = 1.

Note that E[f(S[1:n])] = 1 and

pU(ε)(u) =

{
1− ε if u = 0,
ε if u = 1.

For any T ⊆ [1 : n], since U (ε) → S[1:n] → ST forms a
Markov chain,

pU(ε)|ST (u|ST ) = E[pU(ε)|S[1:n]
(u|S[1:n])|ST ]

=

{
1− εE[f(S[1:n])|ST ] if u = 0,
εE[f(S[1:n])|ST ] if u = 1.

Then we have

I(U (ε);ST )

= EU(ε),ST

[
log

p(U (ε)|ST )
p(U (ε))

]
= EST

[
εE[f(S[1:n])|ST ] log E[f(S[1:n])|ST ]

+ (1− εE[f(S[1:n])|ST ]) log
1− εE[f(S[1:n])|ST ]

1− ε

]
= εEST

[
pS̃T (ST )

pST (ST )
log

pS̃T (ST )

pST (ST )

]
+ EST

[
(1− εE[f(S[1:n])|ST ])(ε(1− E[f(S[1:n])|ST ])

+O(ε2))
]

= εDKL(pS̃T ‖pST ) +O(ε2).

Remark 4. These two families of perturbative auxiliaries are
not new here and have been used extensively in [21], [22] and
references therein.

III. SOME CONSEQUENCES OF THE MAIN RESULT

In this section we will outline some existing results, ex-
tensions of existing results, as well as the new ones that we
obtain as consequences of Theorem 1.

A. Entropy power inequalities and Fisher information in-
equalities

1) Historical remark: The celebrated entropy power in-
equality (EPI) as originally postulated by Shannon [23] states
that if X,Y are independent random variables in Rd then

e
2
dh(X+Y ) ≥ e 2

dh(X) + e
2
dh(Y ),

and equality holds if and only if both X,Y are Gaussian with
proportional covariance matrices. Stam [11] showed that the
EPI is a consequence of

1

J(X + Y )
≥ 1

J(X)
+

1

J(Y )
.

Lieb [24] showed the following two (respectively) equivalent
forms of the above two inequalities,

h(
√
tX +

√
1− tY ) ≥ th(X) + (1− t)h(Y ),

J(
√
tX +

√
1− tY ) ≤ tJ(X) + (1− t)J(Y ),

for any t ∈ (0, 1), and equality holds if and only if both X,Y
are Gaussian with the same covariance matrix. Several other
proofs for the EPI were discoverd by Guo–Shamai–Verdu [25]
(via MMSE), Rioul [26], and Courtade [27].

Lieb’s form of the EPI implies that

h

(
X + Y√

2

)
≥ 1

2
(h(X) + h(Y )) .

Lieb [24] conjectured that if X1, . . . , Xn are mutually inde-
pendent and identically distributed real-valued random vari-
ables, then h

(
X1+···+Xn√

n

)
is non-decreasing in n. This con-

jecture was resolved by Artstein–Ball–Barthe–Naor [8] who
showed the following inequality: If a1, . . . , an+1 ≥ 0 satisfies∑n+1
i=1 a

2
i = 1 then

h

(
n+1∑
i=1

aiXi

)
≥
n+1∑
i=1

1− a2i
n

h

 1√
1− a2i

n+1∑
j=1
j 6=i

ajXj

 ,

and in particular,

h

(
1√
n+ 1

n+1∑
i=1

Xi

)
≥ 1

n+ 1

n+1∑
i=1

h

 1√
n

n+1∑
j=1
j 6=i

Xj

 .

Their proof was simplified and extended in a series of works,
e.g. Madiman–Barron [10] and Madiman–Ghassemi [19]. The
best known version (see Theorem 1 in [19]) is the fractional
partition form of the EPI:

e
2
dh(

∑n
i=1Xi) ≥

∑
T⊆[1:n]
T 6=∅

βT e
2
dh(

∑
i∈T Xi),
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for any mutually independent random variables X1 . . . , Xn in
Rd with densities, and fractional partition {βT }T , i.e. a finite
collection indexed by T ⊆ [1 : n], T 6= ∅, of non-negative real
numbers satisfying

∑
T⊆[1:n]:T3i βT = 1 for every i ∈ [1 : n].

This was derived as a consequence of the following Fisher
information inequality, that we shall refer to as the generalized
Stam’s inequality:

1

J(S[1:n])
≥

∑
T⊆[1:n]

βT
1

J(ST )
,

where ST :=
∑
i∈T Xi.

Remark 5. Unlike the n = 2 setting, the implication that the
generalized Stam’s inequality implies the fractional partition
form of the EPI did not have a straightforward proof. In this
article, we use convex duality to show a straightforward proof
of this implication.

2) Alternate proof of generalized Stam’s inequality: In
this subsection, we derive the generalized Stam’s inequality
involving Fisher information as an immediate consequence
of our mutual information inequality. While a similar proof
technique that we employ has been used by Courtade in [7]
for the case of mutually independent and identically distributed
random variables, as noted in [9] (future work, item 4), the
extension of the ideas to independent random variables is of
independent interest.
Remark 6. To avoid technical issues, we will deal with random
variables X with density function fX that is smooth and
rapidly decaying such that | log fX | has at most polynomial
growth at infinity.

Definition 4. Let X be a random variable in Rd with density
fX . The score function ρX of X is defined by

ρX :=
∇fX
fX

= ∇ log fX .

The Fisher information J(X) of X is defined by

J(X) := E[‖ρX(X)‖2].

Remark 7. Let X,Z be independent random variables in Rd
such that Z ∼ N (0, I). We have the following basic properties
of Fisher information:

(i) J(aX) = a−2J(X) for all a > 0.
(ii) 1

2J(X +
√
tZ) = ∂

∂th(X +
√
tZ) for all t ≥ 0.

(iii) If X has a (finite) covariance matrix then

h(X) =
d

2
log 2πe− 1

2

∫ ∞
0

(
J(X +

√
tZ)− d

1 + t

)
dt.

Property (ii) is also called de Bruijn’s identity (e.g. [11]).
Property (iii) is a consequence of (ii) and is originally shown
by Barron [28] (cf. Lemma 3 of [10]).

Our proof employs the following theorem.

Theorem 2 (Stam [11]). Suppose X1, . . . , Xn are mutually
independent random variables in Rd with densities, and write
Sk := X1 + · · ·+Xk. Then

ρSn(Sn) = E[ρSk(Sk)|Sn]

for all k = 1, . . . , n.

Consequently we have

E[‖E[ρSk(Sk)|Sn]‖2] = J(Sn).

We now use Cauchy–Schwarz inequality to obtain an up-
per bound on the squared norm of the reversed conditional
expectation.

Lemma 5. Let X1, . . . , Xn be mutually independent random
variables in Rd with densities. For k = 1, . . . , n we write
Sk := X1 + · · ·+Xk. Then

E[‖E[ρSn(Sn)|Sk]‖2] ≥
J(Sn)

2

J(Sk)

for all k = 1, . . . , n.

Proof. Consider

J(Sn) = E[‖ρSn(Sn)‖2]
= E[〈ρSn(Sn),E[ρSk(Sk)|Sn]〉]
= E[E[〈ρSn(Sn), ρSk(Sk)〉|Sn]]
= E[〈ρSn(Sn), ρSk(Sk)〉]
= E[E[〈ρSn(Sn), ρSk(Sk)〉|Sk]]
= E[〈E[ρSn(Sn)|Sk], ρSk(Sk)〉]
(a)
≤ E[‖E[ρSn(Sn)|Sk]‖2]1/2 E[‖ρSk(Sk)‖2]1/2

= E[‖E[ρSn(Sn)|Sk]‖2]1/2J(Sk)1/2,

where (a) follows from the Cauchy–Schwarz inequality. This
gives the result.

Proposition 1 (Generalized Stam’s inequality, Theorem 2
of [10]). Let X1, . . . , Xn be mutually independent random
variables in Rd with densities. Suppose βT (T ⊆ [1 : n]) are
non-negative real numbers satisfying

∑
T⊆[1:n]:T3i βT ≤ 1 for

all i = 1, . . . , n. Then

1

J(S[1:n])
≥

∑
T⊆[1:n]

βT
1

J(ST )
,

where ST :=
∑
i∈T Xi.

Proof. Without loss of generality we can assume J(S[1:n]) <
+∞, since otherwise we also have J(ST ) = +∞ for all T ⊆
[1 : n]. Note that S∅ = 0. Let us first assume that ρS[1:n]

is
bounded. An application of Lemma 3 (with f = ρS[1:n]

) gives
the existence of a family of random variables {U (ε)}ε, indexed
by small enough ε > 0, such that U (ε) → S[1:n] → X[1:n]

forms a Markov chain and

I(U (ε);ST ) =
1

2
ε2 E[‖E[ρS[1:n]

(S[1:n])|ST ]‖2] +O(ε3) (1)

for all T ⊆ [1 : n]. Then Theorem 1 (iii) implies∑
T⊆[1:n]

βT I(U
(ε);ST ) ≤ I(U (ε);S[1:n]). (2)

Now consider

J(S[1:n]) = E[‖ρS[1:n]
(S[1:n])‖2]

(a)
≥

∑
T⊆[1:n]

βT E[‖E[ρS[1:n]
(S[1:n])|ST ]‖2]
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(b)
≥

∑
T⊆[1:n]

βT
J(S[1:n])

2

J(ST )
,

where (a) is obtained by putting (1) into (2), dividing by 1
2ε

2

and then taking ε → 0, and (b) follows from Lemma 5. The
result then follows from rearranging.

If ρS[1:n]
is not bounded, then we define fB :=

min

{
1, B
‖ρS[1:n]

‖

}
ρS[1:n]

and the proof proceeds as before

with ρS[1:n]
replaced by f̂B := fB − E[fB(S[1:n])] until

inequality (a). Now, via the dominated convergence theorem,
we let B → +∞ to recover the form as above with the score
functions.

3) From generalized Stam’s inequality to fractional entropy
power inequality: In this section, we provide a new argu-
ment based on convex duality that shows that the fractional
superaddivity of the EPI follows from the generalized Stam’s
inequality. The first two lemmas that we present below are
well-known (see [19] and the references therein) and are the
“Lieb-type-equivalent” forms of the fractional EPI and the
generalized Stam’s inequality. We present a proof of these
here for completeness. Lemma 8 is the crucial observation
that leads to the new argument. This lemma is used to show
that by restricting our attention to optimal fractional partitions,
we can essentially extend the proof for n = 2 to larger values
of n.

Lemma 6. Let X1, . . . , Xn be mutually independent random
variables in Rd. Let ST :=

∑
i∈T Xi. Suppose βT (T ⊆

[1 : n], T 6= ∅) are non-negative real numbers satisfying∑
T⊆[1:n]:T3i βT ≤ 1 for all i ∈ [1 : n]. Then the following

are equivalent.
(i) It holds that

e
2
dh(S[1:n]) ≥

∑
T⊆[1:n]
T 6=∅

βT e
2
dh(ST ).

(ii) For all non-negative real numbers wT (T ⊆ [1 : n],
T 6= ∅) with

∑
T⊆[1:n]
T 6=∅

wT = 1, it holds that

h(S[1:n]) ≥
∑

T⊆[1:n]
T 6=∅

wTh

(√
βT
wT

ST

)
.

Proof. We first show (i) implies (ii). Indeed,∑
T⊆[1:n]
T 6=∅

wTh

(√
βT
wT

ST

)

(a)
≤ d

2
log

 ∑
T⊆[1:n]
T 6=∅

wT e
2
dh
(√

βT
wT

ST
)

=
d

2
log

 ∑
T⊆[1:n]
T 6=∅

βT e
2
dh(ST )



(b)
≤ h(S[1:n]),

where (a) follows from concavity of log(·) and (b) follows
from (i).

Now we show (ii) implies (i). Set wT :=

βT e
2
dh(ST )

(∑
T̃⊆[1:n]
T̃ 6=∅

βT̃ e
2
dh(ST̃ )

)−1
. Note that

h

(√
βT
wT

ST

)
=
d

2
log

βT e
2
dh(ST )

wT

=
d

2
log

 ∑
T̃⊆[1:n]
T̃ 6=∅

βT̃ e
2
dh(ST̃ )


is independent of choice of T , and hence (i) follows immedi-
ately from (ii).

Lemma 7. Let X1, . . . , Xn be mutually independent random
variables in Rd. Let ST :=

∑
i∈T Xi. Suppose βT (T ⊆

[1 : n], T 6= ∅) are non-negative real numbers satisfying∑
T⊆[1:n]:T3i βT ≤ 1 for all i ∈ [1 : n]. Then the following

are equivalent.
(i) It holds that

1

J(S[1:n])
≥

∑
T⊆[1:n]
T 6=∅

βT
1

J(ST )
.

(ii) For all non-negative real numbers wT (T ⊆ [1 : n],
T 6= ∅) with

∑
T⊆[1:n]
T 6=∅

wT = 1, it holds that

J(S[1:n]) ≤
∑

T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

ST

)
.

Proof. We first show (i) implies (ii). Indeed,

∑
T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

ST

)
(a)
≥

 ∑
T⊆[1:n]
T 6=∅

wT
1

J
(√

βT
wT
ST

)

−1

=

 ∑
T⊆[1:n]
T 6=∅

βT
1

J(ST )


−1

(b)
≥ J(S[1:n]),

where (a) follows from convexity of (·)−1 and (b) follows
from (i).

Now we show (ii) implies (i). Set wT :=

βT
1

J(ST )

(∑
T̃⊆[1:n]
T̃ 6=∅

βT̃
1

J(ST̃ )

)−1
. Note that

J

(√
βT
wT

ST

)
=
wT
βT

J(ST ) =

 ∑
T̃⊆[1:n]
T̃ 6=∅

βT̃
1

J(ST̃ )


−1
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is independent of choice of T , and hence (i) follows immedi-
ately from (ii).

We now present a simple but powerful observation that
allows us to simplify the proof that the generalized Stam’s
inequality implies the fractional superadditivity of EPI.

Lemma 8. Let wT (T ⊆ [1 : n], T 6= ∅) be non-negative real
numbers. Then the maximization

max
βT≥0∑
T3i βT≤1

∑
T⊆[1:n]
T 6=∅

wT log βT

is attained at βT = wT∑
i∈T λi

, for some λi > 0 (i ∈ [1 : n]),
with

∑
T⊆[1:n]:T3i βT = 1 for all i ∈ [1 : n].

Proof. Consider

max
βT≥0∑
T3i βT≤1

∑
T⊆[1:n]
T 6=∅

wT log βT

(a)
= min
λi≥0

max
βT≥0

 ∑
T⊆[1:n]
T 6=∅

wT log βT +

n∑
i=1

λi

(
1−

∑
T3i

βT

)

= min
λi≥0

 n∑
i=1

λi + max
βT≥0

∑
T⊆[1:n]
T 6=∅

(
wT log βT − βT

∑
i∈T

λi

)
(b)
= min

λi≥0

 n∑
i=1

λi +
∑

T⊆[1:n]
T 6=∅

(
wT log

wT∑
i∈T λi

− wT
) ,

where (a) holds by strong duality since Slater’s condition
(see Theorem 3.2.8 in [29] for instance) is satisfied for the
maximization on the left hand side, and (b) holds since the
maximum is attained at βT = wT∑

i∈T λi
. The minimization

on the last line is a convex problem and is attained at some
λ∗i ’s satisfying the first-order condition

∑
T3i

wT∑
j∈T λ

∗
j

= 1

(i ∈ [1 : n]). Let β∗T := wT∑
i∈T λ

∗
i

. Then

max
βT≥0∑
T3i βT≤1

∑
T⊆[1:n]
T 6=∅

wT log βT

≤
n∑
i=1

λ∗i +
∑

T⊆[1:n]
T 6=∅

(
wT log β∗T − β∗T

∑
i∈T

λ∗i

)

=
∑

T⊆[1:n]
T 6=∅

wT log β∗T +

n∑
i=1

λ∗i −
n∑
i=1

(
λ∗i
∑
T3i

β∗T

)

=
∑

T⊆[1:n]
T 6=∅

wT log β∗T ,

hence the maximization on the left hand side of the first line
is attained at βT = β∗T .

The following lemma shows that the dual variables λi in
the proof of Lemma 8 represent the variances of the Gaussians

while extending the proof from n = 2 to larger n using an
approach of calculus of variations.

Lemma 9. Let X1, . . . , Xn be mutually independent ran-
dom variables in Rd. Let ST :=

∑
i∈T Xi. Let wT (T ⊆

[1 : n], T 6= ∅) be non-negative real numbers satisfying∑
T⊆[1:n]
T 6=∅

wT = 1. Let βT (T ⊆ [1 : n], T 6= ∅) be non-

negative real numbers satisfying
∑
T⊆[1:n]:T3i βT ≤ 1 for all

i ∈ [1 : n]. Then (i) implies (ii).

(i) For all X1, . . . , Xn, {wT } and {βT } it holds that

J(S[1:n]) ≤
∑

T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

ST

)
.

(ii) For all X1, . . . , Xn, {wT } and {βT } it holds that

h(S[1:n]) ≥
∑

T⊆[1:n]
T 6=∅

wTh

(√
βT
wT

ST

)
.

Proof. It suffices to show that (ii) holds for the βT ’s that
maximize the right hand side. In view of Lemma 8 we can
write βT = wT∑

i∈T λi
for some λi > 0 (i ∈ [1 : n]) such

that
∑
T⊆[1:n]:T3i βT = 1 is satisfied for all i ∈ [1 : n].

Consequently, we have

n∑
i=1

λi =

n∑
i=1

(
λi
∑
T3i

βT

)

=
∑

T⊆[1:n]
T 6=∅

(
βT
∑
i∈T

λi

)

=
∑

T⊆[1:n]
T 6=∅

wT

= 1.

Now for t ∈ [0, 1] define

f(t) := h
(√

1− tS[1:n] +
√
tZ
)

−
∑

T⊆[1:n]
T 6=∅

wTh

(√
βT
wT

√
1− tST +

√
tZ

)
,

where Z ∼ N (0, 1). Note that f(1) = 0 and hence it suffices
to show f ′(t) ≤ 0 for all 0 ≤ t ≤ 1. Indeed

f ′(t)

=
1

2

1

1− t

(
J
(√

1− tS[1:n] +
√
tZ
)

−
∑

T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

√
1− tST +

√
tZ

))

=
1

2

1

1− t

(
J

√1− tS[1:n] +

√√√√ n∑
i=1

λi
√
tZ


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−
∑

T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

√
1− tST +

√
βT
wT

∑
i∈T

λi
√
tZ

))

=
1

2

1

1− t

(
J

(
n∑
i=1

Xi,t

)

−
∑

T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

∑
i∈T

Xi,t

))

(a)
≤ 0,

where we have set Xi,t :=
√
1− tXi +

√
λitZi, where Zi ∼

N (0, 1), and (a) follows from (i).

B. Discrete convexity, strong data processing constant and
maximal correlation

In this subsection, we establish some discrete convexity re-
sults and consequently some results about strong data process-
ing constants and maximal correlations of joint distributions
generalizing results in [6] and [12].

The following is a subclass of layered function families that
we will also be considering in this section.

Definition 5. Let {ST }T be a layered function family on
mutually independent and identically distributed random vari-
ables X1, . . . , Xn. We call the layered function family {ST }T
symmetric if for all permutations π of [1 : n] the distributions
of (S[1:n], S∅, X1, . . . , Xn) and (S[1:n], S∅, Xπ(1), . . . , Xπ(n))
are the same.

Remark 8. If X1, . . . , Xn are mutually independent and iden-
tically distributed random variables, Remark 2 (i) and (ii) are
examples of symmetric layered function families.

Lemma 10 (Discrete convexity). Suppose ϕk (k =
0, 1, . . . , n) are real numbers satisfying

ϕk−1 + ϕk+1 ≥ 2ϕk (3)

for all k = 1, . . . , n− 1. Then

ϕk ≤
n− k
n− l

ϕl +
k − l
n− l

ϕn

for all l = 0, 1, . . . , n− 1, and k satisfying l ≤ k ≤ n.

Proof. Note that k = n and l = k are immediate, so we
assume l < k < n. Observe that ϕk − ϕk−1 is nondecreasing
in k. Then

ϕn − ϕk = (ϕn − ϕn−1) + (ϕn−1 − ϕn−2)
+ · · ·+ (ϕk+1 − ϕk)
≥ (n− k)(ϕk+1 − ϕk)
≥ (n− k)(ϕk − ϕk−1)

≥ n− k
k − l

((ϕk − ϕk−1) + (ϕk−1 − ϕk−2)

+ · · ·+ (ϕl+1 − ϕl))

=
n− k
k − l

(ϕk − ϕl).

The result follows by rearranging.

Proposition 2. Let {ST }T be a symmetric layered function
family on mutually independent and identically distributed
random variables X1, . . . , Xn. Suppose U is a random vari-
able such that U → S[1:n] → (S∅, X[1:n]) forms a Markov
chain. Then I(U ;ST ) is a function of |T |, and we have

I(U ;ST ) + I(U ;ST∪{i,j}) ≥ I(U ;ST∪{i}) + I(U ;ST∪{j})

for all T ⊆ [1 : n] and distinct elements i, j in [1 : n] \ T .
Furthermore,

I(U ;ST ) ≤
n− |T |
n

I(U ;S∅) +
|T |
n
I(U ;S[1:n])

for all T ⊆ [1 : n].

Proof. We first show that I(U ;ST ) is a function of |T |. It
suffices to establish I(U ;ST ) = I(U ;S[1:|T |]) for all T ⊆
[1 : n]. Take a permutation π of [1 : n], that is increasing on
[1 : |T |], such that T = {π(i)}i=1,...,|T |. From the definition
of symmetric layered function family and the Markov chain
U → S[1:n] → (S∅, X1, . . . , Xn), we have that the distri-
butions of (U, S∅, X1, . . . , Xn) and

(
U, S∅, Xπ(1), . . . , Xπ(n)

)
are the same. In particular, the distributions of

(
U, S∅, X[1:|T |]

)
and (U, S∅, XT ) are the same. Hence Lemma 2 (ii) gives

I(U ;ST ) = I(U ;S∅, XT )

= I(U ;S∅, X[1:|T |])

= I(U ;S[1:|T |]).

Now we show that ϕk := I(U ;ST ), where T is any subset
of [1 : n] of cardinality k, satisfies (3). For any k = 1, . . . , n−
1, take any T ⊆ [1 : n] with |T | = k−1 and distinct elements
i, j in [1 : n] \ T , and we have

ϕk−1 + ϕk+1 = I(U ;ST ) + I(U ;ST∪{i,j})
(a)
≥ I(U ;ST∪{i}) + I(U ;ST∪{j})

= 2ϕk,

where (a) follows from (i) of Theorem 1. Hence (3) is satisfied.
Then an application of Lemma 10 (with l = 0) yields

ϕk ≤
n− k
n

ϕ0 +
k

n
ϕn,

or equivalently,

I(U ;ST ) ≤
n− |T |
n

I(U ;S∅) +
|T |
n
I(U ;S[1:n])

for all T ⊆ [1 : n].

Corollary 1. Let {ST }T be a symmetric layered function
family on mutually independent and identically distributed
random variables X1, . . . , Xn. Then the following hold:

(i) Suppose f is an Rd-valued bounded measurable func-
tion, defined on the set of values of S[1:n], such that
E[f(S[1:n])] = 0. Then

E[‖E[f(S[1:n])|ST ]‖2]

≤ n− |T |
n

E[‖E[f(S[1:n])|S∅]‖2] +
|T |
n

E[‖f(S[1:n])‖2]

for all T ⊆ [1 : n].
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(ii) Suppose q(·) is a distribution absolutely continuous and
with bounded Radon–Nikodym derivative with respect to
the distribution of S[1:n]. For T ⊆ [1 : n] let the random
variable S̃T be defined by

pS̃T (s̃) :=
∑
s

pST |S[1:n]
(s̃|s)q(s).

Then

DKL(pS̃T ‖pST ) +DKL(pS̃T∪{i,j}‖pST∪{i,j})
≥ DKL(pS̃T∪{i}‖pST∪{i}) +DKL(pS̃T∪{j}‖pST∪{j})

for all T ⊆ [1 : n] and distinct elements i, j in [1 : n]\T .
Furthermore,

DKL(pS̃T ‖pST )

≤ n− |T |
n

DKL(pS̃∅‖pS∅) +
|T |
n
DKL(pS̃[1:n]

‖pS[1:n]
)

for all T ⊆ [1 : n].

Proof. (i) and (ii) are direct applications of Lemma 3 and 4,
respectively, to Proposition 2.

Definition 6. Let S be a function on mutually independent and
identically distributed random variables X1, . . . , Xn. We call
S cyclically symmetric if for all cyclic shifts π of [1 : n] the
distributions of (S,X1, . . . , Xn) and (S,Xπ(1), . . . , Xπ(n))
are the same.

Remark 9. The function S :=
∑n
i=1XiXi+1 (with Xn+1 :=

X1), where Xi’s are mutually independent and identically
distributed random variables in R, is an example of cyclically
symmetric function.

Proposition 3. Let S be a cyclically symmetric function
on mutually independent and identically distributed random
variables X1, . . . , Xn. Suppose U is a random variable such
that U → S → X[1:n] forms a Markov chain. Then for all
k = 1, . . . , n− 1 we have

I(U ;X[1:k−1]) + I(U ;X[1:k+1]) ≥ 2I(U ;X[1:k]).

Furthermore,

I(U ;X[1:k]) ≤
k

n
I(U ;S)

for all k = 0, 1, . . . , n.

Proof. Since U → S → X[1:n] forms a Markov chain and
S is a function of X[1:n], we have I(U ;S) = I(U ;X[1:n]).
Further from the cyclic symmetry of S and the Markov
chain U → S → X[1:n], we have that the distributions
of (U, S,X1, X2, . . . , Xn) and (U, S,Xn, X1, . . . , Xn−1) are
the same. Consequently, for all k = 0, . . . , n − 1 we have
I(U ;X[1:k+1]) = I(U ;X[1:k]∪{n}). Hence for k = 1, . . . , n−
1,

I(U ;X[1:k+1])− I(U ;X[1:k])

= I(U ;X[1:k]∪{n})− I(U ;X[1:k])

= I(U ;Xn|X[1:k])
(a)
= I(U ;Xn|X[1:k]) + I(Xk;Xn|X[1:k−1])

= I(U,Xk;Xn|X[1:k−1])

≥ I(U ;Xn|X[1:k−1])

= I(U ;X[1:k−1]∪{n})− I(U ;X[1:k−1])

= I(U ;X[1:k])− I(U ;X[1:k−1]),

where (a) holds since Xk is independent of X[1:k−1]∪{n}. Now
ϕk := I(U ;X[1:k]) satisfies (3) and hence by Lemma 10 (with
l = 0) we have

I(U ;X[1:k]) ≤
k

n
I(U ;X[1:n])

=
k

n
I(U ;S)

as required.

1) Strong data processing constant:

Definition 7. The strong data processing constant s∗(X;Y )
of two random variables X,Y is defined by

s∗(X;Y ) := sup
p(u|x)

I(U ;X) 6=0

I(U ;Y )

I(U ;X)
.

Corollary 2. Let {ST }T be a symmetric layered function
family on mutually independent and identically distributed
random variables X1, . . . , Xn. Then

s∗(S[1:n];ST ) ≤
n− |T |
n

s∗(S[1:n];S∅) +
|T |
n

for all T ⊆ [1 : n].

Proof. Fix any U satisfying the Markov chain U → S[1:n] →
ST . Define a random variable Ũ , satisfying the Markov chain
Ũ → S[1:n] → (S∅, X[1:n]), according to

pŨ |S[1:n]
(u|s) := pU |S[1:n]

(u|s).

Indeed Ũ also satisfies the Markov chain Ũ → S[1:n] → ST
since ST is a function of (S∅, X[1:n]). Hence the distributions
of (U, S[1:n], ST ) and (Ũ , S[1:n], ST ) are the same. Therefore,

I(U ;ST )

I(U ;S[1:n])
=

I(Ũ ;ST )

I(Ũ ;S[1:n])

(a)
≤ n− |T |

n

I(Ũ ;S∅)

I(Ũ ;S[1:n])
+
|T |
n

≤ n− |T |
n

s∗(S[1:n];S∅) +
|T |
n

,

where (a) is an application of Proposition 2.

Remark 10. Observe that this result generalizes the one in [6]
from sums of mutually independent and identically distributed
random variables to the more general symmetric layered
function families. The proof technique used here is clearly
motivated by the arguments in [6].

Corollary 3. Let S be a cyclically symmetric function on
mutually independent and identically distributed random vari-
ables X1, . . . , Xn. Then s∗(S;X[1:k]) ≤ k

n for all k =
1, . . . , n.

Proof. This is immediate from Proposition 3.
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2) Maximal correlation: The Hirschfeld–Gebelein–Rényi
maximal correlation measures the dependence between two
random variables in a general probability space. This quantity
is first introduced by Hirschfeld [30] and Gebelein [31] and
then studied by Rényi [32].

Definition 8. The Hirschfeld–Gebelein–Rényi maximal cor-
relation ρm(X;Y ) of two random variables X,Y is defined
by

ρm(X;Y ) := sup
f, g real-valued measurable
E[f(X)]=E[g(Y )]=0

E[f(X)2]=E[g(X)2]=1

E[f(X)g(Y )].

An alternative expression for the quantity is formulated by
Rényi [32] as follows.

Proposition 4 (Rényi [32]). Let X,Y be random variables.
Then

ρm(X;Y ) = sup
f real-valued measurable

E[f(X)]=0

E[f(X)2]=1

E[E[f(X)|Y ]2]1/2.

Corollary 4. Let {ST }T be a symmetric layered function
family on mutually independent and identically distributed
random variables X1, . . . , Xn. Then

ρm(S[1:n];ST )
2 ≤ n− |T |

n
ρm(S[1:n];S∅)

2 +
|T |
n

for all T ⊆ [1 : n].

Proof. By Corollary 1 (i), for any bounded real-valued
measurable function f such that E[f(S[1:n])] = 0 and
E[f(S[1:n])

2] = 1 we have

E[E[f(S[1:n])|ST ]2]

≤ n− |T |
n

E[E[f(S[1:n])|S∅]2] +
|T |
n

E[f(S[1:n])
2]

≤ n− |T |
n

ρm(S[1:n];S∅)
2 +
|T |
n

.

Taking supremum over f yields the result.

3) KL divergence inequality: The KL divergence in-
equalities obtained in Corollary 1 (ii) imply, by choosing
X1, . . . , Xn to follow Poisson distribution, certain new con-
vexity results concerning the KL divergence of binomial
distribution given a Poisson distribution. Our results have a
similar flavor to a conjecture of Yu (Conjecture 1 of [33]) who
conjectured that N 7→ DKL

(
Binomial

(
N, λN

)∥∥Poisson (λ))
is completely monotonic. Even the convexity of this function
is yet to be proven.

The following lemma is well-known and we present a proof
here for completeness.

Lemma 11. Suppose X1 ∼ Poisson(λ1) and X2 ∼
Poisson(λ2) are independent and Y ∼ Binomial(N,µ). Then
the random variable Ỹ defined by

pỸ (ỹ) :=
∑
y

pX1|X1+X2
(ỹ|y)pY (y)

satisfies Ỹ ∼ Binomial
(
N, λ1

λ1+λ2
µ
)

.

Proof. We first compute

pX1|X1+X2
(ỹ|y) = pX1

(ỹ)pX2
(y − ỹ)

pX1+X2(y)

=

(
y

ỹ

)
λỹ1λ

y−ỹ
2

(λ1 + λ2)y
.

Then

pỸ (ỹ) =
∑
y

pX1|X1+X2
(ỹ|y)pY (y)

=

N∑
y=ỹ

(
y

ỹ

)
λỹ1λ

y−ỹ
2

(λ1 + λ2)y

(
N

y

)
µy(1− µ)N−y

=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ
N∑
y=ỹ

(
N − ỹ
y − ỹ

)(
λ2

λ1 + λ2
µ

)y−ỹ
(1− µ)N−y

=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ (
1− µ+

λ2
λ1 + λ2

µ

)N−ỹ
=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ (
1− λ1

λ1 + λ2
µ

)N−ỹ
as required.

Corollary 5. Let N ≥ 0, λ̃, λ ≥ 0 and 0 ≤ µ ≤ 1. For
k = 0, 1, . . . , n let

ϕk :=

DKL

(
Binomial

(
N,

λ̃+ λk

λ̃+ λn
µ

)∥∥∥∥∥Poisson(λ̃+ λk
))

.

Then

ϕk−1 + ϕk+1 ≥ 2ϕk

for all k = 1, . . . , n− 1, and

ϕk ≤
n− k
n

ϕ0 +
k

n
ϕn

for all k = 0, 1, . . . , n.

Proof. Let S∅ ∼ Poisson(λ̃) and X1, . . . , Xn ∼ Poisson(λ)
be mutually independent random variables. Let ST := S∅ +∑
i∈T Xi for non-empty T ⊆ [1 : n]. Note that {ST }T forms a

symmetric layered function family on X1, . . . , Xn. Also note
that ST ∼ Poisson(λ̃+λ|T |) and S[1:n]−ST ∼ Poisson(λ(n−
|T |)) are independent. Let S̃T be defined as in Corollary 1 (ii)
(with q(·) ∼ Binomial(N,µ)). Applying Lemma 11, we have
S̃T ∼ Binomial

(
N, λ̃+λ|T |

λ̃+λn
µ
)

. The result then follows from
Corollary 1 (ii).

Corollary 6. For all N ≥ 0 and λ ≥ 0, the function

t 7→ DKL (Binomial (N, t)‖Poisson (λt))

is convex on [0, 1].

Proof. This is immediate from Corollary 5 (with λ̃ = 0 and
µ = 1) and continuity.
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IV. CONCLUSION AND FUTURE WORK

One possible application of our main result is to discover
possible connections between sumset inequalities in combina-
torics and entropic inequalities in information theory. Sumset
inequalities have been playing an important role in additive
combinatorics. Several sumset inequalities have been shown to
have entropic equivalents or analogues, for instance [20], [34],
[35], and for some of these equivalent formulations, one can
establish the combinatorial version from the entropic version
and vice-versa.

Ruzsa has conjectured the sumset inequality (Conjecture
3.13 of [20]) that, if A1, A2, A3, A4 are finite subsets of some
(possibly non-Abelian) group then

max
a2∈A2, a3∈A3

(
|A1 ◦A2 ◦A3||A1 ◦ a2 ◦A3 ◦A4|

|A1 ◦A2 ◦ a3 ◦A4||A2 ◦A3 ◦A4|
)

≥ |A1 ◦A2 ◦A3 ◦A4|3,

where ◦ denotes the group operation, and A ◦ B :=
{a ◦ b : a ∈ A, b ∈ B} for any subsets A,B of the group.
From our main result, however, the entropic analogue of
this sumset inequality can be shown. Via an application of
Theorem 1 (iii) (with U := X1◦X2◦X3◦X4 and ST := XT ),
we have that if X1, X2, X3, X4 are mutually independent
random variables taking value in some (possibly non-Abelian)
group then

H(X1 ◦X2 ◦X3) +H(X1 ◦X2 ◦X3 ◦X4|X2)

+H(X1 ◦X2 ◦X3 ◦X4|X3) +H(X2 ◦X3 ◦X4)

≥ 3H(X1 ◦X2 ◦X3 ◦X4).

Note that as [20] dealt with dependent random variables, they
were not able to establish an entropic inequality that mimicked
the previous conjecture (see the paragraph after Conjecture
3.13 in [20]).

In general, the sumset inequality that for subsets A1, . . . , An
of some group,

n∏
i=1

max
ai∈Ai

|A1 ◦ · · · ◦Ai−1 ◦ ai ◦Ai+1 ◦ · · · ◦An|

≥ |A1 ◦ · · · ◦An|n−1,

is known to be true for Abelian groups (Theorem 9.3, Chapter
1 of [36]). For non-Abelian groups it is known to be true
for n ≤ 3 (Corollary 3.12 of [20]) while the other cases
remain open (Problem 9.4, Chapter 1 of [36]). On the other
hand, the corresponding entropic inequality that for mutually
independent random variables X1, . . . , Xn,

n∑
i=1

H(X1 ◦ · · · ◦Xn|Xi) ≥ (n− 1)H(X1 ◦ · · · ◦Xn),

can be deduced from our main result for all n and (possibly
non-Abelian) groups.
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