A Mutual Information Inequality and Some Applications

Chin Wa (Ken) Lau, Member, IEEE, Chandra Nair, Fellow, IEEE, and David Ng, Member, IEEE

Abstract—In this paper we derive an inequality relating linear combinations of mutual information between subsets of mutually independent random variables and an auxiliary random variable. One choice of a family of auxiliary variables leads to a new proof of a Stam-type inequality regarding the Fisher Information of sums of independent random variables. Another choice of a family of auxiliary random variables leads to new results as well as new proofs of results relating to strong data processing constants and maximal correlation between sums of independent random variables. Other results obtained include convexity of Kullback–Leibler divergence over a parameterized path along pairs of binomial and Poisson distributions, as well as a new duality-based argument relating the Stam-type inequality and entropy power inequality.

Index Terms—Mutual information, monotonicity of entropy power, Stam's inequality, strong data processing, maximal correlation

I. INTRODUCTION

N this paper we obtain an information inequality relating linear combinations of mutual information between subsets of mutually independent random variables and an auxiliary random variable. Our main result is a rather elementary supermodularity inequality which surprisingly implies a variety of non-trivial inequalities and yields new inequalities. We are directly motivated by the work of Balister and Bollobás [1] who present generalizations of Shearer's lemma [2], [3], Han's inequality [4], and the Madiman-Tetali inequality [5]. We obtain a compression type inequality similar to Theorem 4.2 of [1], generalizing the work in [6]. We are also motivated by the work of Courtade [7] who presents an elementary proof of monotonicity of entropy power and Fisher information which was originally established by Artstein, Ball, Barthe and Naor [8]. Along these lines, [9] gave an estimate of the scaled sums of mutually independent and identically distributed random variables, based on the second largest eigenvalue of the operator associated with maximal correlation. This work is also partly motivated by a comment in [9] that wishes for an extension of the technique to independent but non-identically distributed random variables. Using a certain perturbative auxiliary, we recover the generalized Stam's inequality [10], which extends Stam's inequality for Fisher information [11] and the Artstein–Ball–Barthe–Naor inequality [8], as a corollary of our main result. We also extend the results involving maximal correlation by Dembo-Kagan-Shepp [12], strong

The authors are with the Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong.

data processing constants in [6], and obtain new Kullback– Leibler (KL) divergence convexity results.

There is a very large body of work on information inequalities (including entropy power inequalities) and a complete literature review is beyond the scope of this article. Below, we present an incomplete list of references that an interested reader may want to peruse. A survey of non-traditional techniques for proving information inequalities is presented in [13]. A survey of different versions of entropy power inequalities (forward and reverse) for Shannon entropy and Rényi entropy is presented in [14]. Strong data processing inequality constants and inequalities are given a very nice treatment in [15]. Recent works on information inequalities exploiting submodularity can be found in [16]–[18].

A. Organization of the paper

The results of this paper stem from a rather immediate supermodularity inequality concerning an auxiliary random variable and two independent random variables. The compression operation, as used in [1], is then applied to extend this "two-point" inequality to larger families of inequalities. Further we use the notion of layered function family to extend these inequalities from random vectors to functions of random vectors. All of the above ideas are presented in Section II-A. Two families of perturbative auxiliaries will turn out to be useful in deriving several of our corollaries. These two families and certain estimates of them will be discussed in Section II-B. In Section III-A, we combine the first two ideas to give a novel proof of a generalized Stam's inequality involving fractional partitions, first obtained in [19] (see Theorem 1). Unlike the case of two independent variables, the proof in [19] that linked the generalized Stam's inequality and a corresponding one showing the fractional superadditivity of EPI is quite nontrivial. In Section III-A2, we show a convex duality based argument that gives a rather immediate (and new) proof of this implication, and makes it quite similar to the two variable case.

In Section III-B, we restrict ourselves to independent and identically distributed random variables and derive certain discrete convexity results. Using this, we generalize some results concerning strong data processing constants, maximal correlation, and KL divergence. Finally in Section IV we lay some groundwork for future work involving some connections to sumset inequalities.

Notation: We denote by [a : b] the set of integers $\geq a$ and $\leq b$. We denote by |T| the cardinality of a set T. For random variables X_1, \ldots, X_n and for $T \subseteq [1 : n]$, we write

This paper was in part presented at the *IEEE International Symposium on Information Theory*, in Espoo, Finland, 2022.

Manuscript received September 8, 2022; revised March 10, 2023.

 $X_T := \{X_i\}_{i \in T}$, the tuple consisting of X_i where $i \in T$. For a positive integer d, we denote by $\|\cdot\|$ the Euclidean norm on \mathbb{R}^d .

II. MAIN

A. Preliminaries

Definition 1. Let *n* be a positive integer. An *n*-fractional multiset $\{\alpha_T\}_T$ is a finite sequence of non-negative real numbers α_T indexed by $T \subseteq [1:n]$.

Remark 1. The notion of *n*-fractional multisets is not new and has been used in [1] where the authors call *n*-fractional multisets to be "multisets of subsets of [n]". On the other hand, we view an *n*-fractional multiset as the finite sequence of its, potentially fractional, multiplicities.

Definition 2. Let *n* be a positive integer and let $\{\alpha_T\}_T, \{\beta_T\}_T$ be two *n*-fractional multisets. We call $\{\beta_T\}_T$ an *elementary compression* of $\{\alpha_T\}_T$ if there exist $A, B \subseteq [1:n]$ with $A \not\subseteq B$ and $B \not\subseteq A$, and $0 < \delta \leq \min\{\alpha_A, \alpha_B\}$ such that for all $T \subseteq [1:n]$ we have

$$\beta_T = \begin{cases} \alpha_T - \delta & \text{if } T = A \text{ or } T = B, \\ \alpha_T + \delta & \text{if } T = A \cup B \text{ or } T = A \cap B \\ \alpha_T & \text{otherwise.} \end{cases}$$

The result of a finite sequence of elementary compressions of $\{\alpha_T\}_T$ is called a *compression* of $\{\alpha_T\}_T$.

As studied in [1], the relation "is a compression of" defines a partial order on the collection of *n*-fractional multisets. It is immediate that an *n*-fractional multiset $\{\beta_T\}_T$ is minimal under this partial order (i.e. cannot be further compressed) if and only if the set $\{T \subseteq [1:n] : \beta_T \neq 0\}$ is totally ordered under set inclusion.

The following lemma, a supermodularity inequality, is rather immediate but forms the basis of most of the results in this paper.

Lemma 1. Let X_1, \ldots, X_n be random variables that are mutually independent conditioned on a random variable S_{\emptyset} , and let U be any auxiliary random variable. Then the following hold:

- (i) $I(U; S_{\emptyset}, X_A) + I(U; S_{\emptyset}, X_B) \leq I(U; S_{\emptyset}, X_{A \cup B}) + I(U; S_{\emptyset}, X_{A \cap B})$ for all $A, B \subseteq [1:n]$.
- (ii) $\sum_{T \subseteq [1:n]} \alpha_T I(U; S_{\emptyset}, X_T) \leq \sum_{T \subseteq [1:n]} \beta_T I(U; S_{\emptyset}, X_T),$ for any n-fractional multisets $\{\alpha_T\}, \{\beta_T\}$ such that $\{\beta_T\}$ is a compression of $\{\alpha_T\}$.
- (iii) $\sum_{T \subseteq [1:n]} \beta_T I(U; S_{\emptyset}, X_T) \leq I(U; S_{\emptyset}, X_{[1:n]}) + (c 1)I(U; S_{\emptyset})$, where $\{\beta_T\}$ is an n-fractional multiset satisfying $\sum_{T \subseteq [1:n]: T \ni i} \beta_T \leq 1$ for all i = 1, ..., n, and $c := \sum_{T \subseteq [1:n]} \beta_T$.

Proof. Suppose $A, B \subseteq [1:n]$. Then

$$I(U; S_{\emptyset}, X_B) - I(U; S_{\emptyset}, X_{A \cap B})$$

= $I(U; X_{B \setminus A} | S_{\emptyset}, X_{A \cap B})$
 $\leq I(U, X_{A \setminus B}; X_{B \setminus A} | S_{\emptyset}, X_{A \cap B})$
(a)
$$I(U, X_{A \setminus B}; X_{B \setminus A} | S_{\emptyset}, X_{A \cap B})$$

$$- I(X_{A \setminus B}; X_{B \setminus A} | S_{\emptyset}, X_{A \cap B})$$

= $I(U; X_{B \setminus A} | S_{\emptyset}, X_A)$
= $I(U; S_{\emptyset}, X_{A \cup B}) - I(U; S_{\emptyset}, X_A),$

where (a) holds by the mutual independence of the X_i 's conditioned on S_{\emptyset} . Rearranging gives

$$I(U; S_{\emptyset}, X_A) + I(U; S_{\emptyset}, X_B)$$

$$\leq I(U; S_{\emptyset}, X_{A \cup B}) + I(U; S_{\emptyset}, X_{A \cap B})$$

which is (i).

If $\{\beta_T\}$ is an elementary compression of $\{\alpha_T\}$, then the inequality in (ii) follows from (i) by canceling like terms on both sides. Since a compression is obtained as a sequence of elementary compressions, (ii) follows.

We will show (iii) by induction on n. Indeed the base case n = 1 is trivial. Note that (i) gives

$$I(U; S_{\emptyset}, X_{[1:n-1]}) + I(U; S_{\emptyset}, X_{T \cup \{n\}}) \\\leq I(U; S_{\emptyset}, X_{[1:n]}) + I(U; S_{\emptyset}, X_T)$$

for all $T \subseteq [1 : n - 1]$. Suppose β_T $(T \subseteq [1 : n])$ are nonnegative real numbers satisfying $\sum_{T \subseteq [1:n]: T \ni i} \beta_T \leq 1$ for all $i = 1, \ldots, n$. Then

$$\sum_{T \subseteq [1:n]} \beta_T I(U; S_{\emptyset}, X_T)$$

$$= \sum_{T \subseteq [1:n-1]} \left(\beta_T I(U; S_{\emptyset}, X_T) + \beta_{T \cup \{n\}} I(U; S_{\emptyset}, X_{T \cup \{n\}}) \right)$$

$$\leq \sum_{T \subseteq [1:n-1]} \left(\beta_T I(U; S_{\emptyset}, X_T) + \beta_{T \cup \{n\}} (I(U; S_{\emptyset}, X_{[1:n]}) - I(U; S_{\emptyset}, X_{[1:n]}) + I(U; S_{\emptyset}, X_T)) \right)$$

$$\stackrel{(a)}{\leq} I(U; S_{\emptyset}, X_{[1:n]}) - I(U; S_{\emptyset}, X_{[1:n-1]}) + \sum_{T \subseteq [1:n-1]} (\beta_T + \beta_{T \cup \{n\}}) I(U; S_{\emptyset}, X_T)$$

$$\stackrel{(b)}{\leq} I(U; S_{\emptyset}, X_{[1:n]}) - I(U; S_{\emptyset}, X_{[1:n-1]}) + (c-1) I(U; S_{\emptyset})$$

$$= I(U; S_{\emptyset}, X_{[1:n]}) + (c-1) I(U; S_{\emptyset}),$$

where (a) holds since $\sum_{T \subseteq [1:n-1]} \beta_{T \cup \{n\}} \leq 1$, and (b) follows by applying the induction hypothesis to the non-negative real numbers $\{\beta_T + \beta_{T \cup \{n\}}\}_{T \subseteq [1:n-1]}$.

Definition 3. Let X_i (i = 1, ..., n) and S_T $(T \subseteq [1 : n])$ be random variables. We call $\{S_T\}_T$ a *layered function family* on $X_1, ..., X_n$ if S_{\emptyset} is independent of $X_{[1:n]}$, and for every non-empty $T \subseteq [1 : n]$ and $i \in T$ there is a function $g_{T,i}$ such that $S_T = g_{T,i}(S_T \setminus \{i\}, X_i)$.

Remark 2. Clearly a trivial example of a layered function family is given by $S_T := (S_{\emptyset}, X_T)$. A canonical example of a layered function family is given by $S_T := S_{\emptyset} + \sum_{i \in T} f_i(X_i)$, where f_i 's are functions taking values in some Abelian monoid (i.e. a set with a binary operation, which we denote by +, that is associative and commutative, and has an identity element). In particular,

(i)
$$S_T := S_{\emptyset} + \sum_{i \in T} X_i$$
, where $S_{\emptyset}, X_i \in \mathbb{R}^d$

(ii) $S_T := \max(\{S_\emptyset\} \cup \{X_i\}_{i \in T})$, where $S_\emptyset, X_i \in \mathbb{R}$; are examples of layered function families.

Remark 3. Layered function families play a similar role as that of *partition-determined functions* in [20] and it may be possible that they are intrinsically trying to capture a similar behaviour and dependence structure. For our results, we prefer to stick with the definition of layered function families. Note that [20] deals with dependent random variables while here our main focus is on mutually independent random variables.

Lemma 2. Let $\{S_T\}_T$ be a layered function family on mutually independent random variables X_1, \ldots, X_n . Suppose $U \to S_{[1:n]} \to (S_{\emptyset}, X_{[1:n]})$ forms a Markov chain. Then the following hold:

- (i) $U \to S_T \to (S_{\emptyset}, X_T)$ forms a Markov chain for all $T \subseteq [1:n]$.
- (ii) $I(U; S_T) = I(U; S_{\emptyset}, X_T)$ for all $T \subseteq [1:n]$.

Proof. Suppose $T \subseteq [1:n]$. Consider

$$\begin{split} &0 \stackrel{(a)}{=} I(U; S_{\emptyset}, X_{[1:n]} | S_{[1:n]}) \\ &= I(U; S_{\emptyset}, X_{T}, X_{[1:n] \setminus T} | S_{[1:n]}) \\ \stackrel{(b)}{=} I(U; S_{\emptyset}, X_{T}, X_{[1:n] \setminus T}, S_{T} | S_{[1:n]}) \\ &\geq I(U; S_{\emptyset}, X_{T} | S_{[1:n]}, X_{[1:n] \setminus T}, S_{T}) \\ \stackrel{(c)}{=} I(U; S_{\emptyset}, X_{T} | X_{[1:n] \setminus T}, S_{T}) \\ \stackrel{(d)}{=} I(U; S_{\emptyset}, X_{T} | X_{[1:n] \setminus T}, S_{T}) + I(X_{[1:n] \setminus T}; S_{\emptyset}, X_{T} | S_{T}) \\ &= I(U, X_{[1:n] \setminus T}; S_{\emptyset}, X_{T} | S_{T}) \\ &\geq I(U; S_{\emptyset}, X_{T} | S_{T}) \\ &\geq I(U; S_{\emptyset}, X_{T} | S_{T}) \\ &\geq 0, \end{split}$$

where (a) holds since $U \to S_{[1:n]} \to (S_{\emptyset}, X_{[1:n]})$ forms a Markov chain, (b) holds since S_T is a function of (S_{\emptyset}, X_T) , (c) holds since $S_{[1:n]}$ is a function of $(S_T, X_{[1:n]\setminus T})$, and (d) holds since $X_{[1:n]\setminus T}$ and $(S_{\emptyset}, X_T, S_T)$ are independent. This shows (i). Furthermore,

$$I(U; S_T) \stackrel{\text{(a)}}{=} I(U; S_T, S_{\emptyset}, X_T)$$
$$\stackrel{\text{(b)}}{=} I(U; S_{\emptyset}, X_T),$$

where (a) holds since $U \to S_T \to (S_{\emptyset}, X_T)$ forms a Markov chain, and (b) holds since S_T is a function of (S_{\emptyset}, X_T) . This shows (ii).

We now state the main theorem. The proof is an immediate application of Lemma 2 to Lemma 1.

Theorem 1. Let $\{S_T\}_T$ be a layered function family on mutually independent random variables X_1, \ldots, X_n . Suppose $U \to S_{[1:n]} \to (S_{\emptyset}, X_{[1:n]})$ forms a Markov chain. Then the following hold:

- (i) $I(U; S_A) + I(U; S_B) \le I(U; S_{A \cup B}) + I(U; S_{A \cap B})$ for all $A, B \subseteq [1:n]$.
- (ii) $\sum_{T \subseteq [1:n]} \alpha_T I(U; S_T) \leq \sum_{T \subseteq [1:n]} \beta_T I(U; S_T)$, for any *n*-fractional multisets $\{\alpha_T\}, \{\beta_T\}$ such that $\{\beta_T\}$ is a compression of $\{\alpha_T\}$.
- (iii) $\sum_{T \subseteq [1:n]} \beta_T I(U; S_T) \leq I(U; S_{[1:n]}) + (c-1)I(U; S_{\emptyset}),$ where $\{\beta_T\}$ is an n-fractional multiset satisfying

$$\sum_{\substack{T \subseteq [1:n]: T \ni i \\ T \subseteq [1:n]}} \beta_T \leq 1 \text{ for all } i = 1, \dots, n, \text{ and } c := \sum_{\substack{T \subseteq [1:n]}} \beta_T.$$

It turns out that the freedom in choosing the auxiliary random variable U plays a rather important role in the development of the inequalities.

B. Two families of perturbative auxiliaries

In this section we will present two families of auxiliaries that will turn out to be useful for obtaining corollaries to Theorem 1.

Lemma 3. Let $\{S_T\}_T$ be a layered function family on mutually independent random variables X_1, \ldots, X_n . Suppose f is an \mathbb{R}^d -valued bounded measurable function, defined on the set of values of $S_{[1:n]}$, such that $\mathbb{E}[f(S_{[1:n]})] = 0$. Then there exists a family of random variables $\{U^{(\epsilon)}\}_{\epsilon}$, indexed by small enough $\epsilon > 0$, such that $U^{(\epsilon)} \to S_{[1:n]} \to (S_{\emptyset}, X_{[1:n]})$ forms a Markov chain and

$$I(U^{(\epsilon)}; S_T) = \frac{1}{2} \epsilon^2 \operatorname{E}[\|\operatorname{E}[f(S_{[1:n]})|S_T]\|^2] + O(\epsilon^3)$$

for all $T \subseteq [1:n]$.

Proof. Let $\tilde{p}(\cdot)$ be the probability mass function of the uniform distribution on the Boolean hypercube $\{\pm 1\}^d$. For small enough $\epsilon > 0$, define the random variable $U^{(\epsilon)}$ taking values in $\{\pm 1\}^d$, satisfying the Markov chain $U^{(\epsilon)} \to S_{[1:n]} \to (S_{\emptyset}, X_{[1:n]})$, according to

$$p_{U^{(\epsilon)}|S_{[1:n]}}(u|s) := \tilde{p}(u)(1 + \epsilon \langle f(s), u \rangle).$$

Note that $p_{U^{(\epsilon)}}(u) = \tilde{p}(u)$ (which follows from $\mathbb{E}[f(S_{[1:n]})] = 0$), $\mathbb{E}[U^{(\epsilon)}] = 0$ and $\mathbb{E}[U^{(\epsilon)}U^{(\epsilon)\mathsf{T}}] = I$. For any $T \subseteq [1:n]$, since $U^{(\epsilon)} \to S_{[1:n]} \to S_T$ forms a Markov chain,

$$p_{U^{(\epsilon)}|S_T}(u|S_T) = \mathbb{E}[p_{U^{(\epsilon)}|S_{[1:n]}}(u|S_{[1:n]})|S_T]$$

= $\tilde{p}(u)(1 + \epsilon \langle \mathbb{E}[f(S_{[1:n]})|S_T], u \rangle).$

Then we have

$$\begin{split} &I(U^{(\epsilon)}; S_T) \\ &= \mathcal{E}_{U^{(\epsilon)}, S_T} \left[\log \frac{p(U^{(\epsilon)}|S_T)}{p(U^{(\epsilon)})} \right] \\ &= \mathcal{E}_{U^{(\epsilon)}, S_T} \left[\log(1 + \epsilon \langle \mathcal{E}[f(S_{[1:n]})|S_T], U^{(\epsilon)} \rangle) \right] \\ &= \mathcal{E}_{S_T} \left[\sum_u \tilde{p}(u)(1 + \epsilon \langle \mathcal{E}[f(S_{[1:n]})|S_T], u \rangle) \right] \\ &\log(1 + \epsilon \langle \mathcal{E}[f(S_{[1:n]})|S_T], u \rangle) \right] \\ &= \mathcal{E}_{S_T} \left[\sum_u \tilde{p}(u) \left(\epsilon \langle \mathcal{E}[f(S_{[1:n]})|S_T], u \rangle \right. \\ &+ \frac{1}{2} \epsilon^2 \langle \mathcal{E}[f(S_{[1:n]})|S_T], u \rangle^2 + O(\epsilon^3) \right) \right] \\ &= \frac{1}{2} \epsilon^2 \operatorname{tr} \left(\mathcal{E}[\mathcal{E}[f(S_{[1:n]})|S_T] \mathcal{E}[f(S_{[1:n]})|S_T]^{\mathsf{T}}] \\ &\cdot \sum_u \tilde{p}(u) u u^{\mathsf{T}} \right) + O(\epsilon^3) \\ &= \frac{1}{2} \epsilon^2 \mathcal{E}[||\mathcal{E}[f(S_{[1:n]})|S_T]||^2] + O(\epsilon^3). \end{split}$$

Lemma 4. Let $\{S_T\}_T$ be a layered function family on mutually independent random variables X_1, \ldots, X_n . Suppose $q(\cdot)$ is a distribution that is absolutely continuous and has a bounded Radon–Nikodym derivative with respect to the distribution of $S_{[1:n]}$. Then there exists a family of random variables $\{U^{(\epsilon)}\}_{\epsilon}$, indexed by small enough $\epsilon > 0$, such that $U^{(\epsilon)} \rightarrow S_{[1:n]} \rightarrow (S_{\emptyset}, X_{[1:n]})$ forms a Markov chain and

$$I(U^{(\epsilon)}; S_T) = \epsilon D_{\mathrm{KL}}(p_{\tilde{S}_T} || p_{S_T}) + O(\epsilon^2)$$

for all $T \subseteq [1:n]$, where the random variable \tilde{S}_T is defined by

$$p_{\tilde{S}_T}(\tilde{s}) := \sum_s p_{S_T|S_{[1:n]}}(\tilde{s}|s)q(s).$$

Proof. Let $f(s) := q(s)/p_{S_{[1:n]}}(s)$ be the Radon–Nikodym derivative. For small enough $\epsilon > 0$, define the random variable $U^{(\epsilon)}$ taking values in $\{0, 1\}$, satisfying the Markov chain $U^{(\epsilon)} \to S_{[1:n]} \to (S_{\emptyset}, X_{[1:n]})$, according to

$$p_{U^{(\epsilon)}|S_{[1:n]}}(u|s) := \begin{cases} 1 - \epsilon f(s) & \text{if } u = 0, \\ \epsilon f(s) & \text{if } u = 1. \end{cases}$$

Note that $E[f(S_{[1:n]})] = 1$ and

$$p_{U^{(\epsilon)}}(u) = \begin{cases} 1 - \epsilon & \text{if } u = 0, \\ \epsilon & \text{if } u = 1. \end{cases}$$

For any $T \subseteq [1:n]$, since $U^{(\epsilon)} \to S_{[1:n]} \to S_T$ forms a Markov chain,

$$p_{U^{(\epsilon)}|S_T}(u|S_T) = \mathbb{E}[p_{U^{(\epsilon)}|S_{[1:n]}}(u|S_{[1:n]})|S_T]$$

=
$$\begin{cases} 1 - \epsilon \mathbb{E}[f(S_{[1:n]})|S_T] & \text{if } u = 0, \\ \epsilon \mathbb{E}[f(S_{[1:n]})|S_T] & \text{if } u = 1. \end{cases}$$

Then we have

$$\begin{split} I(U^{(\epsilon)}; S_T) \\ &= \mathcal{E}_{U^{(\epsilon)}, S_T} \left[\log \frac{p(U^{(\epsilon)} | S_T)}{p(U^{(\epsilon)})} \right] \\ &= \mathcal{E}_{S_T} \left[\epsilon \, \mathcal{E}[f(S_{[1:n]}) | S_T] \log \mathcal{E}[f(S_{[1:n]}) | S_T] \\ &+ (1 - \epsilon \, \mathcal{E}[f(S_{[1:n]}) | S_T]) \log \frac{1 - \epsilon \, \mathcal{E}[f(S_{[1:n]}) | S_T]}{1 - \epsilon} \right] \\ &= \epsilon \, \mathcal{E}_{S_T} \left[\frac{p_{\tilde{S}_T}(S_T)}{p_{S_T}(S_T)} \log \frac{p_{\tilde{S}_T}(S_T)}{p_{S_T}(S_T)} \right] \\ &+ \mathcal{E}_{S_T} \left[(1 - \epsilon \, \mathcal{E}[f(S_{[1:n]}) | S_T]) (\epsilon (1 - \mathcal{E}[f(S_{[1:n]}) | S_T]) \\ &+ O(\epsilon^2)) \right] \\ &= \epsilon D_{\mathrm{KL}}(p_{\tilde{S}_T} \| p_{S_T}) + O(\epsilon^2). \end{split}$$

Remark 4. These two families of perturbative auxiliaries are not new here and have been used extensively in [21], [22] and references therein.

III. SOME CONSEQUENCES OF THE MAIN RESULT

In this section we will outline some existing results, extensions of existing results, as well as the new ones that we obtain as consequences of Theorem 1.

A. Entropy power inequalities and Fisher information inequalities

1) Historical remark: The celebrated entropy power inequality (EPI) as originally postulated by Shannon [23] states that if X, Y are independent random variables in \mathbb{R}^d then

$$e^{\frac{2}{d}h(X+Y)} > e^{\frac{2}{d}h(X)} + e^{\frac{2}{d}h(Y)},$$

and equality holds if and only if both X, Y are Gaussian with proportional covariance matrices. Stam [11] showed that the EPI is a consequence of

$$\frac{1}{J(X+Y)} \ge \frac{1}{J(X)} + \frac{1}{J(Y)}.$$

Lieb [24] showed the following two (respectively) equivalent forms of the above two inequalities,

$$h(\sqrt{tX} + \sqrt{1 - tY}) \ge th(X) + (1 - t)h(Y), J(\sqrt{tX} + \sqrt{1 - tY}) \le tJ(X) + (1 - t)J(Y),$$

for any $t \in (0, 1)$, and equality holds if and only if both X, Y are Gaussian with the same covariance matrix. Several other proofs for the EPI were discoverd by Guo–Shamai–Verdu [25] (via MMSE), Rioul [26], and Courtade [27].

Lieb's form of the EPI implies that

$$h\left(\frac{X+Y}{\sqrt{2}}\right) \ge \frac{1}{2}\left(h(X) + h(Y)\right).$$

Lieb [24] conjectured that if X_1, \ldots, X_n are mutually independent and identically distributed real-valued random variables, then $h\left(\frac{X_1+\cdots+X_n}{\sqrt{n}}\right)$ is non-decreasing in n. This conjecture was resolved by Artstein–Ball–Barthe–Naor [8] who showed the following inequality: If $a_1, \ldots, a_{n+1} \ge 0$ satisfies $\sum_{i=1}^{n+1} a_i^2 = 1$ then

$$h\left(\sum_{i=1}^{n+1} a_i X_i\right) \ge \sum_{i=1}^{n+1} \frac{1-a_i^2}{n} h\left(\frac{1}{\sqrt{1-a_i^2}} \sum_{\substack{j=1\\j\neq i}}^{n+1} a_j X_j\right),$$

and in particular,

$$h\left(\frac{1}{\sqrt{n+1}}\sum_{i=1}^{n+1}X_i\right) \ge \frac{1}{n+1}\sum_{i=1}^{n+1}h\left(\frac{1}{\sqrt{n}}\sum_{\substack{j=1\\j\neq i}}^{n+1}X_j\right).$$

Their proof was simplified and extended in a series of works, e.g. Madiman–Barron [10] and Madiman–Ghassemi [19]. The best known version (see Theorem 1 in [19]) is the *fractional partition* form of the EPI:

$$e^{\frac{2}{d}h\left(\sum_{i=1}^{n} X_{i}\right)} \geq \sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} \beta_{T} e^{\frac{2}{d}h\left(\sum_{i \in T} X_{i}\right)},$$

for any mutually independent random variables $X_1 \dots, X_n$ in \mathbb{R}^d with densities, and *fractional partition* $\{\beta_T\}_T$, i.e. a finite collection indexed by $T \subseteq [1:n], T \neq \emptyset$, of non-negative real numbers satisfying $\sum_{T \subseteq [1:n]:T \ni i} \beta_T = 1$ for every $i \in [1:n]$. This was derived as a consequence of the following Fisher information inequality, that we shall refer to as the *generalized Stam's inequality*:

$$\frac{1}{J(S_{[1:n]})} \ge \sum_{T \subseteq [1:n]} \beta_T \frac{1}{J(S_T)},$$

where $S_T := \sum_{i \in T} X_i$.

Remark 5. Unlike the n = 2 setting, the implication that the generalized Stam's inequality implies the fractional partition form of the EPI did not have a straightforward proof. In this article, we use convex duality to show a straightforward proof of this implication.

2) Alternate proof of generalized Stam's inequality: In this subsection, we derive the generalized Stam's inequality involving Fisher information as an immediate consequence of our mutual information inequality. While a similar proof technique that we employ has been used by Courtade in [7] for the case of mutually independent and identically distributed random variables, as noted in [9] (future work, item 4), the extension of the ideas to independent random variables is of independent interest.

Remark 6. To avoid technical issues, we will deal with random variables X with density function f_X that is smooth and rapidly decaying such that $|\log f_X|$ has at most polynomial growth at infinity.

Definition 4. Let X be a random variable in \mathbb{R}^d with density f_X . The *score function* ρ_X of X is defined by

$$\rho_X := \frac{\nabla f_X}{f_X} = \nabla \log f_X.$$

The Fisher information J(X) of X is defined by

$$J(X) := \mathbb{E}[\|\rho_X(X)\|^2].$$

Remark 7. Let X, Z be independent random variables in \mathbb{R}^d such that $Z \sim \mathcal{N}(0, I)$. We have the following basic properties of Fisher information:

- (i) $J(aX) = a^{-2}J(X)$ for all a > 0.
- (ii) $\frac{1}{2}J(X + \sqrt{t}Z) = \frac{\partial}{\partial t}h(X + \sqrt{t}Z)$ for all $t \ge 0$.

(iii) If X has a (finite) covariance matrix then

$$h(X) = \frac{d}{2}\log 2\pi e - \frac{1}{2}\int_0^\infty \left(J(X + \sqrt{t}Z) - \frac{d}{1+t}\right)dt.$$

Property (ii) is also called de Bruijn's identity (e.g. [11]). Property (iii) is a consequence of (ii) and is originally shown by Barron [28] (cf. Lemma 3 of [10]).

Our proof employs the following theorem.

Theorem 2 (Stam [11]). Suppose X_1, \ldots, X_n are mutually independent random variables in \mathbb{R}^d with densities, and write $S_k := X_1 + \cdots + X_k$. Then

$$\rho_{S_n}(S_n) = \mathbf{E}[\rho_{S_k}(S_k)|S_n]$$

for all k = 1, ..., n.

Consequently we have

$$\mathbb{E}[\|\mathbb{E}[\rho_{S_k}(S_k)|S_n]\|^2] = J(S_n).$$

We now use Cauchy–Schwarz inequality to obtain an upper bound on the squared norm of the reversed conditional expectation.

Lemma 5. Let X_1, \ldots, X_n be mutually independent random variables in \mathbb{R}^d with densities. For $k = 1, \ldots, n$ we write $S_k := X_1 + \cdots + X_k$. Then

$$\mathbb{E}[\|\mathbb{E}[\rho_{S_n}(S_n)|S_k]\|^2] \ge \frac{J(S_n)^2}{J(S_k)}$$

for all k = 1, ..., n.

Proof. Consider

$$\begin{split} J(S_n) &= \mathbf{E}[\|\rho_{S_n}(S_n)\|^2] \\ &= \mathbf{E}[\langle \rho_{S_n}(S_n), \mathbf{E}[\rho_{S_k}(S_k)|S_n] \rangle] \\ &= \mathbf{E}[\mathbf{E}[\langle \rho_{S_n}(S_n), \rho_{S_k}(S_k) \rangle|S_n]] \\ &= \mathbf{E}[\mathbf{E}[\langle \rho_{S_n}(S_n), \rho_{S_k}(S_k) \rangle] \\ &= \mathbf{E}[\mathbf{E}[\langle \rho_{S_n}(S_n), \rho_{S_k}(S_k) \rangle|S_k]] \\ &= \mathbf{E}[\langle \mathbf{E}[\rho_{S_n}(S_n)|S_k], \rho_{S_k}(S_k) \rangle] \\ &\stackrel{(\mathbf{a})}{\leq} \mathbf{E}[\|\mathbf{E}[\rho_{S_n}(S_n)|S_k]\|^2]^{1/2} \mathbf{E}[\|\rho_{S_k}(S_k)\|^2]^{1/2} \\ &= \mathbf{E}[\|\mathbf{E}[\rho_{S_n}(S_n)|S_k]\|^2]^{1/2} J(S_k)^{1/2}, \end{split}$$

where (a) follows from the Cauchy–Schwarz inequality. This gives the result. $\hfill \Box$

Proposition 1 (Generalized Stam's inequality, Theorem 2 of [10]). Let X_1, \ldots, X_n be mutually independent random variables in \mathbb{R}^d with densities. Suppose β_T ($T \subseteq [1:n]$) are non-negative real numbers satisfying $\sum_{T \subseteq [1:n]: T \ni i} \beta_T \leq 1$ for all $i = 1, \ldots, n$. Then

$$\frac{1}{J(S_{[1:n]})} \ge \sum_{T \subseteq [1:n]} \beta_T \frac{1}{J(S_T)},$$

where $S_T := \sum_{i \in T} X_i$.

Proof. Without loss of generality we can assume $J(S_{[1:n]}) < +\infty$, since otherwise we also have $J(S_T) = +\infty$ for all $T \subseteq [1:n]$. Note that $S_{\emptyset} = 0$. Let us first assume that $\rho_{S_{[1:n]}}$ is bounded. An application of Lemma 3 (with $f = \rho_{S_{[1:n]}}$) gives the existence of a family of random variables $\{U^{(\epsilon)}\}_{\epsilon}$, indexed by small enough $\epsilon > 0$, such that $U^{(\epsilon)} \to S_{[1:n]} \to X_{[1:n]}$ forms a Markov chain and

$$I(U^{(\epsilon)}; S_T) = \frac{1}{2} \epsilon^2 \operatorname{E}[\|\operatorname{E}[\rho_{S_{[1:n]}}(S_{[1:n]})|S_T]\|^2] + O(\epsilon^3) \quad (1)$$

for all $T \subseteq [1:n]$. Then Theorem 1 (iii) implies

$$\sum_{\subseteq [1:n]} \beta_T I(U^{(\epsilon)}; S_T) \le I(U^{(\epsilon)}; S_{[1:n]}).$$
⁽²⁾

Now consider

T

$$J(S_{[1:n]}) = \mathbf{E}[\|\rho_{S_{[1:n]}}(S_{[1:n]})\|^2]$$

$$\stackrel{(a)}{\geq} \sum_{T \subseteq [1:n]} \beta_T \mathbf{E}[\|\mathbf{E}[\rho_{S_{[1:n]}}(S_{[1:n]})|S_T]\|^2]$$

$$\stackrel{\text{(b)}}{\geq} \sum_{T \subset [1:n]} \beta_T \frac{J(S_{[1:n]})^2}{J(S_T)}$$

where (a) is obtained by putting (1) into (2), dividing by $\frac{1}{2}\epsilon^2$ and then taking $\epsilon \to 0$, and (b) follows from Lemma 5. The result then follows from rearranging.

If $\rho_{S_{[1:n]}}$ is not bounded, then we define $f_B := \min\left\{1, \frac{B}{\|\rho_{S_{[1:n]}}\|}\right\} \rho_{S_{[1:n]}}$ and the proof proceeds as before with $\rho_{S_{[1:n]}}$ replaced by $\hat{f}_B := f_B - \operatorname{E}[f_B(S_{[1:n]})]$ until inequality (a). Now, via the dominated convergence theorem, we let $B \to +\infty$ to recover the form as above with the score functions.

3) From generalized Stam's inequality to fractional entropy power inequality: In this section, we provide a new argument based on convex duality that shows that the fractional superaddivity of the EPI follows from the generalized Stam's inequality. The first two lemmas that we present below are well-known (see [19] and the references therein) and are the "Lieb-type-equivalent" forms of the fractional EPI and the generalized Stam's inequality. We present a proof of these here for completeness. Lemma 8 is the crucial observation that leads to the new argument. This lemma is used to show that by restricting our attention to optimal fractional partitions, we can essentially extend the proof for n = 2 to larger values of n.

Lemma 6. Let X_1, \ldots, X_n be mutually independent random variables in \mathbb{R}^d . Let $S_T := \sum_{i \in T} X_i$. Suppose β_T ($T \subseteq [1 : n], T \neq \emptyset$) are non-negative real numbers satisfying $\sum_{T \subseteq [1:n]: T \ni i} \beta_T \leq 1$ for all $i \in [1 : n]$. Then the following are equivalent.

(i) It holds that

$$e^{\frac{2}{d}h(S_{[1:n]})} \geq \sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} \beta_T e^{\frac{2}{d}h(S_T)}.$$

(ii) For all non-negative real numbers w_T ($T \subseteq [1 : n]$, $T \neq \emptyset$) with $\sum_{\substack{T \subseteq [1:n]\\T \neq \emptyset}} w_T = 1$, it holds that

$$h(S_{[1:n]}) \geq \sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} w_T h\left(\sqrt{\frac{\beta_T}{w_T}} S_T\right).$$

Proof. We first show (i) implies (ii). Indeed,

$$\sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} w_T h\left(\sqrt{\frac{\beta_T}{w_T}}S_T\right)$$

$$\stackrel{(a)}{\leq} \frac{d}{2} \log\left(\sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} w_T e^{\frac{2}{d}h\left(\sqrt{\frac{\beta_T}{w_T}}S_T\right)}\right)$$

$$= \frac{d}{2} \log\left(\sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} \beta_T e^{\frac{2}{d}h(S_T)}\right)$$

$$\stackrel{(b)}{\leq} h(S_{[1:n]}),$$

where (a) follows from concavity of $\log(\cdot)$ and (b) follows from (i).

Now we show (ii) implies (i). Set
$$w_T$$
 :=
 $\beta_T e^{\frac{2}{d}h(S_T)} \left(\sum_{\substack{\tilde{T} \subseteq [1:n] \\ \tilde{T} \neq \emptyset}} \beta_{\tilde{T}} e^{\frac{2}{d}h(S_{\tilde{T}})} \right)^{-1}$. Note that
 $h\left(\sqrt{\frac{\beta_T}{w_T}}S_T\right) = \frac{d}{2}\log \frac{\beta_T e^{\frac{2}{d}h(S_T)}}{w_T}$
 $= \frac{d}{2}\log \left(\sum_{\substack{\tilde{T} \subseteq [1:n] \\ \tilde{T} \neq \emptyset}} \beta_{\tilde{T}} e^{\frac{2}{d}h(S_{\tilde{T}})} \right)$

is independent of choice of T, and hence (i) follows immediately from (ii).

Lemma 7. Let X_1, \ldots, X_n be mutually independent random variables in \mathbb{R}^d . Let $S_T := \sum_{i \in T} X_i$. Suppose β_T ($T \subseteq [1 : n], T \neq \emptyset$) are non-negative real numbers satisfying $\sum_{T \subseteq [1:n]: T \ni i} \beta_T \leq 1$ for all $i \in [1 : n]$. Then the following are equivalent.

(i) It holds that

$$\frac{1}{J(S_{[1:n]})} \ge \sum_{\substack{T \subseteq [1:n]\\T \neq \emptyset}} \beta_T \frac{1}{J(S_T)}.$$

(ii) For all non-negative real numbers w_T ($T \subseteq [1 : n]$, $T \neq \emptyset$) with $\sum_{\substack{T \subseteq [1:n]\\T \neq \emptyset}} w_T = 1$, it holds that

$$J(S_{[1:n]}) \le \sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} w_T J\left(\sqrt{\frac{\beta_T}{w_T}} S_T\right).$$

Proof. We first show (i) implies (ii). Indeed,

$$\sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} w_T J\left(\sqrt{\frac{\beta_T}{w_T}} S_T\right) \stackrel{(a)}{\geq} \left(\sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} w_T \frac{1}{J\left(\sqrt{\frac{\beta_T}{w_T}} S_T\right)}\right)^{-1}$$
$$= \left(\sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} \beta_T \frac{1}{J(S_T)}\right)^{-1}$$
$$\stackrel{(b)}{\geq} J(S_{[1:n]}),$$

where (a) follows from convexity of $(\cdot)^{-1}$ and (b) follows from (i).

Now we show (ii) implies (i). Set
$$w_T := \beta_T \frac{1}{J(S_T)} \left(\sum_{\substack{\tilde{T} \subseteq [1:n] \\ \tilde{T} \neq \emptyset}} \beta_{\tilde{T}} \frac{1}{J(S_{\tilde{T}})} \right)^{-1}$$
. Note that
$$J \left(\sqrt{\frac{\beta_T}{w_T}} S_T \right) = \frac{w_T}{\beta_T} J(S_T) = \left(\sum_{\substack{\tilde{T} \subseteq [1:n] \\ \tilde{T} \neq \emptyset}} \beta_{\tilde{T}} \frac{1}{J(S_{\tilde{T}})} \right)^{-1}$$

is independent of choice of T, and hence (i) follows immediately from (ii).

We now present a simple but powerful observation that allows us to simplify the proof that the generalized Stam's inequality implies the fractional superadditivity of EPI.

Lemma 8. Let w_T ($T \subseteq [1:n]$, $T \neq \emptyset$) be non-negative real numbers. Then the maximization

$$\max_{\substack{\beta_T \ge 0\\ \sum_{T \ni i} \beta_T \le 1}} \sum_{\substack{T \subseteq [1:n]\\ T \neq \emptyset}} w_T \log \beta_T$$

is attained at $\beta_T = \frac{w_T}{\sum_{i \in T} \lambda_i}$, for some $\lambda_i > 0$ $(i \in [1 : n])$, with $\sum_{T \subseteq [1:n]: T \ni i} \beta_T = 1$ for all $i \in [1 : n]$.

Proof. Consider

$$\max_{\substack{\beta_T \ge 0\\ T \ni i}} \sum_{\substack{T \subseteq [1:n]\\ T \neq \emptyset}} w_T \log \beta_T \\ \stackrel{\text{(a)}}{=} \min_{\lambda_i \ge 0} \max_{\substack{\beta_T \ge 0\\ T \subseteq [1:n]}} \left(\sum_{\substack{T \subseteq [1:n]\\ T \neq \emptyset}} w_T \log \beta_T + \sum_{i=1}^n \lambda_i \left(1 - \sum_{T \ni i} \beta_T \right) \right) \\ = \min_{\lambda_i \ge 0} \left(\sum_{i=1}^n \lambda_i + \max_{\substack{\beta_T \ge 0\\ T \subseteq [1:n]\\ T \neq \emptyset}} \sum_{\substack{T \subseteq [1:n]\\ T \neq \emptyset}} \left(w_T \log \beta_T - \beta_T \sum_{i \in T} \lambda_i \right) \right) \\ \stackrel{\text{(b)}}{=} \min_{\lambda_i \ge 0} \left(\sum_{i=1}^n \lambda_i + \sum_{\substack{T \subseteq [1:n]\\ T \neq \emptyset}} \left(w_T \log \frac{w_T}{\sum_{i \in T} \lambda_i} - w_T \right) \right),$$

where (a) holds by strong duality since Slater's condition (see Theorem 3.2.8 in [29] for instance) is satisfied for the maximization on the left hand side, and (b) holds since the maximum is attained at $\beta_T = \frac{w_T}{\sum_{i \in T} \lambda_i}$. The minimization on the last line is a convex problem and is attained at some λ_i^* 's satisfying the first-order condition $\sum_{T \ni i} \frac{w_T}{\sum_{j \in T} \lambda_j^*} = 1$ $(i \in [1:n])$. Let $\beta_T^* := \frac{w_T}{\sum_{i \in T} \lambda_i^*}$. Then

$$\begin{aligned} \max_{\substack{\beta_T \ge 0\\ T \supseteq i}} \sum_{\substack{T \subseteq [1:n]\\ T \neq \emptyset}} w_T \log \beta_T \\ &\leq \sum_{i=1}^n \lambda_i^* + \sum_{\substack{T \subseteq [1:n]\\ T \neq \emptyset}} \left(w_T \log \beta_T^* - \beta_T^* \sum_{i \in T} \lambda_i^* \right) \\ &= \sum_{\substack{T \subseteq [1:n]\\ T \neq \emptyset}} w_T \log \beta_T^* + \sum_{i=1}^n \lambda_i^* - \sum_{i=1}^n \left(\lambda_i^* \sum_{T \ni i} \beta_T^* \right) \\ &= \sum_{\substack{T \subseteq [1:n]\\ T \neq \emptyset}} w_T \log \beta_T^*, \end{aligned}$$

hence the maximization on the left hand side of the first line is attained at $\beta_T = \beta_T^*$.

The following lemma shows that the dual variables λ_i in the proof of Lemma 8 represent the variances of the Gaussians

while extending the proof from n = 2 to larger n using an approach of calculus of variations.

Lemma 9. Let X_1, \ldots, X_n be mutually independent random variables in \mathbb{R}^d . Let $S_T := \sum_{i \in T} X_i$. Let w_T ($T \subseteq [1:n], T \neq \emptyset$) be non-negative real numbers satisfying $\sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} w_T = 1$. Let β_T ($T \subseteq [1:n], T \neq \emptyset$) be nonnegative real numbers satisfying $\sum_{T \subseteq [1:n]: T \ni i} \beta_T \leq 1$ for all $i \in [1:n]$. Then (i) implies (ii).

(i) For all X_1, \ldots, X_n , $\{w_T\}$ and $\{\beta_T\}$ it holds that

$$J(S_{[1:n]}) \leq \sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} w_T J\left(\sqrt{\frac{\beta_T}{w_T}} S_T\right).$$

(ii) For all X_1, \ldots, X_n , $\{w_T\}$ and $\{\beta_T\}$ it holds that

$$h(S_{[1:n]}) \ge \sum_{\substack{T \subseteq [1:n]\\T \neq \emptyset}} w_T h\left(\sqrt{\frac{\beta_T}{w_T}} S_T\right).$$

Proof. It suffices to show that (ii) holds for the β_T 's that maximize the right hand side. In view of Lemma 8 we can write $\beta_T = \frac{w_T}{\sum_{i \in T} \lambda_i}$ for some $\lambda_i > 0$ ($i \in [1 : n]$) such that $\sum_{T \subseteq [1:n]: T \ni i} \beta_T = 1$ is satisfied for all $i \in [1 : n]$. Consequently, we have

$$\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} \left(\lambda_i \sum_{T \ni i} \beta_T \right)$$
$$= \sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} \left(\beta_T \sum_{i \in T} \lambda_i \right)$$
$$= \sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} w_T$$
$$= 1.$$

Now for $t \in [0, 1]$ define

$$f(t) := h\left(\sqrt{1-t}S_{[1:n]} + \sqrt{t}Z\right) - \sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} w_T h\left(\sqrt{\frac{\beta_T}{w_T}}\sqrt{1-t}S_T + \sqrt{t}Z\right),$$

where $Z \sim \mathcal{N}(0, 1)$. Note that f(1) = 0 and hence it suffices to show $f'(t) \leq 0$ for all $0 \leq t \leq 1$. Indeed

$$f'(t) = \frac{1}{2} \frac{1}{1-t} \left(J\left(\sqrt{1-t}S_{[1:n]} + \sqrt{t}Z\right) - \sum_{\substack{T \subseteq [1:n] \\ T \neq \emptyset}} w_T J\left(\sqrt{\frac{\beta_T}{w_T}}\sqrt{1-t}S_T + \sqrt{t}Z\right) \right)$$
$$= \frac{1}{2} \frac{1}{1-t} \left(J\left(\sqrt{1-t}S_{[1:n]} + \sqrt{\sum_{i=1}^n \lambda_i}\sqrt{t}Z\right) \right)$$

$$-\sum_{\substack{T\subseteq[1:n]\\T\neq\emptyset}} w_T J\left(\sqrt{\frac{\beta_T}{w_T}}\sqrt{1-t}S_T + \sqrt{\frac{\beta_T}{w_T}}\sum_{i\in T}\lambda_i\sqrt{t}Z\right)\right)$$
$$= \frac{1}{2}\frac{1}{1-t}\left(J\left(\sum_{i=1}^n X_{i,t}\right)\right)$$
$$-\sum_{\substack{T\subseteq[1:n]\\T\neq\emptyset}} w_T J\left(\sqrt{\frac{\beta_T}{w_T}}\sum_{i\in T}X_{i,t}\right)\right)$$
$$\overset{(a)}{\leq} 0,$$

where we have set $X_{i,t} := \sqrt{1-t}X_i + \sqrt{\lambda_i t}Z_i$, where $Z_i \sim \mathcal{N}(0,1)$, and (a) follows from (i).

B. Discrete convexity, strong data processing constant and maximal correlation

In this subsection, we establish some discrete convexity results and consequently some results about strong data processing constants and maximal correlations of joint distributions generalizing results in [6] and [12].

The following is a subclass of layered function families that we will also be considering in this section.

Definition 5. Let $\{S_T\}_T$ be a layered function family on mutually independent and identically distributed random variables X_1, \ldots, X_n . We call the layered function family $\{S_T\}_T$ symmetric if for all permutations π of [1:n] the distributions of $(S_{[1:n]}, S_{\emptyset}, X_1, \ldots, X_n)$ and $(S_{[1:n]}, S_{\emptyset}, X_{\pi(1)}, \ldots, X_{\pi(n)})$ are the same.

Remark 8. If X_1, \ldots, X_n are mutually independent and identically distributed random variables, Remark 2 (i) and (ii) are examples of symmetric layered function families.

Lemma 10 (Discrete convexity). Suppose φ_k (k = 0, 1, ..., n) are real numbers satisfying

$$\varphi_{k-1} + \varphi_{k+1} \ge 2\varphi_k \tag{3}$$

for all k = 1, ..., n - 1. Then

$$\varphi_k \le \frac{n-k}{n-l}\varphi_l + \frac{k-l}{n-l}\varphi_n$$

for all $l = 0, 1, \ldots, n-1$, and k satisfying $l \le k \le n$.

Proof. Note that k = n and l = k are immediate, so we assume l < k < n. Observe that $\varphi_k - \varphi_{k-1}$ is nondecreasing in k. Then

$$\varphi_n - \varphi_k = (\varphi_n - \varphi_{n-1}) + (\varphi_{n-1} - \varphi_{n-2}) + \dots + (\varphi_{k+1} - \varphi_k) \geq (n-k)(\varphi_{k+1} - \varphi_k) \geq (n-k)(\varphi_k - \varphi_{k-1}) \geq \frac{n-k}{k-l}((\varphi_k - \varphi_{k-1}) + (\varphi_{k-1} - \varphi_{k-2}) + \dots + (\varphi_{l+1} - \varphi_l)) = \frac{n-k}{k-l}(\varphi_k - \varphi_l).$$

The result follows by rearranging.

Proposition 2. Let $\{S_T\}_T$ be a symmetric layered function family on mutually independent and identically distributed random variables X_1, \ldots, X_n . Suppose U is a random variable such that $U \to S_{[1:n]} \to (S_{\emptyset}, X_{[1:n]})$ forms a Markov chain. Then $I(U; S_T)$ is a function of |T|, and we have

$$I(U; S_T) + I(U; S_{T \cup \{i, j\}}) \ge I(U; S_{T \cup \{i\}}) + I(U; S_{T \cup \{j\}})$$

for all $T \subseteq [1:n]$ and distinct elements i, j in $[1:n] \setminus T$. Furthermore,

$$I(U; S_T) \le \frac{n - |T|}{n} I(U; S_{\emptyset}) + \frac{|T|}{n} I(U; S_{[1:n]})$$

for all $T \subseteq [1:n]$.

Proof. We first show that $I(U; S_T)$ is a function of |T|. It suffices to establish $I(U; S_T) = I(U; S_{[1:|T|]})$ for all $T \subseteq [1:n]$. Take a permutation π of [1:n], that is increasing on [1:|T|], such that $T = {\pi(i)}_{i=1,...,|T|}$. From the definition of symmetric layered function family and the Markov chain $U \to S_{[1:n]} \to (S_{\emptyset}, X_1, ..., X_n)$, we have that the distributions of $(U, S_{\emptyset}, X_1, ..., X_n)$ and $(U, S_{\emptyset}, X_{\pi(1)}, ..., X_{\pi(n)})$ are the same. In particular, the distributions of (U, S_{\emptyset}, X_T) are the same. Hence Lemma 2 (ii) gives

$$I(U; S_T) = I(U; S_{\emptyset}, X_T) = I(U; S_{\emptyset}, X_{[1:|T|]}) = I(U; S_{[1:|T|]}).$$

Now we show that $\varphi_k := I(U; S_T)$, where T is any subset of [1:n] of cardinality k, satisfies (3). For any $k = 1, \ldots, n - 1$, take any $T \subseteq [1:n]$ with |T| = k - 1 and distinct elements i, j in $[1:n] \setminus T$, and we have

$$\varphi_{k-1} + \varphi_{k+1} = I(U; S_T) + I(U; S_{T \cup \{i,j\}})$$

$$\stackrel{(a)}{\geq} I(U; S_{T \cup \{i\}}) + I(U; S_{T \cup \{j\}})$$

$$= 2\varphi_k,$$

where (a) follows from (i) of Theorem 1. Hence (3) is satisfied. Then an application of Lemma 10 (with l = 0) yields

$$\varphi_k \le \frac{n-k}{n}\varphi_0 + \frac{k}{n}\varphi_n,$$

or equivalently,

$$I(U; S_T) \leq \frac{n - |T|}{n} I(U; S_{\emptyset}) + \frac{|T|}{n} I(U; S_{[1:n]})$$

for all $T \subset [1:n]$.

Corollary 1. Let $\{S_T\}_T$ be a symmetric layered function family on mutually independent and identically distributed random variables X_1, \ldots, X_n . Then the following hold:

(i) Suppose f is an ℝ^d-valued bounded measurable function, defined on the set of values of S_[1:n], such that E[f(S_[1:n])] = 0. Then

$$\mathbb{E}[\|\mathbb{E}[f(S_{[1:n]})|S_T]\|^2]$$

$$\leq \frac{n-|T|}{n} \mathbb{E}[\|\mathbb{E}[f(S_{[1:n]})|S_{\emptyset}]\|^2] + \frac{|T|}{n} \mathbb{E}[\|f(S_{[1:n]})\|^2]$$
for all $T \subseteq [1:n].$

(ii) Suppose $q(\cdot)$ is a distribution absolutely continuous and with bounded Radon–Nikodym derivative with respect to the distribution of $S_{[1:n]}$. For $T \subseteq [1:n]$ let the random variable \tilde{S}_T be defined by

$$p_{\tilde{S}_T}(\tilde{s}) := \sum_s p_{S_T|S_{[1:n]}}(\tilde{s}|s)q(s).$$

Then

$$D_{\mathrm{KL}}(p_{\tilde{S}_{T}} \| p_{S_{T}}) + D_{\mathrm{KL}}(p_{\tilde{S}_{T\cup\{i,j\}}} \| p_{S_{T\cup\{i,j\}}})$$

$$\geq D_{\mathrm{KL}}(p_{\tilde{S}_{T\cup\{i\}}} \| p_{S_{T\cup\{i\}}}) + D_{\mathrm{KL}}(p_{\tilde{S}_{T\cup\{j\}}} \| p_{S_{T\cup\{j\}}})$$

for all $T \subseteq [1:n]$ and distinct elements i, j in $[1:n] \setminus T$. Furthermore,

$$D_{\mathrm{KL}}(p_{\tilde{S}_{T}} || p_{S_{T}}) \leq \frac{n - |T|}{n} D_{\mathrm{KL}}(p_{\tilde{S}_{\emptyset}} || p_{S_{\emptyset}}) + \frac{|T|}{n} D_{\mathrm{KL}}(p_{\tilde{S}_{[1:n]}} || p_{S_{[1:n]}})$$

for all $T \subseteq [1:n]$.

Proof. (i) and (ii) are direct applications of Lemma 3 and 4, respectively, to Proposition 2. \Box

Definition 6. Let S be a function on mutually independent and identically distributed random variables X_1, \ldots, X_n . We call S cyclically symmetric if for all cyclic shifts π of [1:n] the distributions of (S, X_1, \ldots, X_n) and $(S, X_{\pi(1)}, \ldots, X_{\pi(n)})$ are the same.

Remark 9. The function $S := \sum_{i=1}^{n} X_i X_{i+1}$ (with $X_{n+1} := X_1$), where X_i 's are mutually independent and identically distributed random variables in \mathbb{R} , is an example of cyclically symmetric function.

Proposition 3. Let *S* be a cyclically symmetric function on mutually independent and identically distributed random variables X_1, \ldots, X_n . Suppose *U* is a random variable such that $U \to S \to X_{[1:n]}$ forms a Markov chain. Then for all $k = 1, \ldots, n - 1$ we have

$$I(U; X_{[1:k-1]}) + I(U; X_{[1:k+1]}) \ge 2I(U; X_{[1:k]}).$$

Furthermore,

$$I(U; X_{[1:k]}) \le \frac{k}{n} I(U; S)$$

for all k = 0, 1, ..., n.

Proof. Since $U \to S \to X_{[1:n]}$ forms a Markov chain and S is a function of $X_{[1:n]}$, we have $I(U; S) = I(U; X_{[1:n]})$. Further from the cyclic symmetry of S and the Markov chain $U \to S \to X_{[1:n]}$, we have that the distributions of $(U, S, X_1, X_2, \ldots, X_n)$ and $(U, S, X_n, X_1, \ldots, X_{n-1})$ are the same. Consequently, for all $k = 0, \ldots, n-1$ we have $I(U; X_{[1:k+1]}) = I(U; X_{[1:k] \cup \{n\}})$. Hence for $k = 1, \ldots, n-1$,

$$I(U; X_{[1:k+1]}) - I(U; X_{[1:k]})$$

= $I(U; X_{[1:k]\cup\{n\}}) - I(U; X_{[1:k]})$
= $I(U; X_n | X_{[1:k]})$
^(a)
= $I(U; X_n | X_{[1:k]}) + I(X_k; X_n | X_{[1:k-1]})$

$$= I(U, X_k; X_n | X_{[1:k-1]})$$

$$\geq I(U; X_n | X_{[1:k-1]})$$

$$= I(U; X_{[1:k-1]\cup\{n\}}) - I(U; X_{[1:k-1]})$$

$$= I(U; X_{[1:k]}) - I(U; X_{[1:k-1]}),$$

where (a) holds since X_k is independent of $X_{[1:k-1]\cup\{n\}}$. Now $\varphi_k := I(U; X_{[1:k]})$ satisfies (3) and hence by Lemma 10 (with l = 0) we have

$$I(U; X_{[1:k]}) \leq \frac{k}{n} I(U; X_{[1:n]})$$
$$= \frac{k}{n} I(U; S)$$

as required.

1) Strong data processing constant:

Definition 7. The strong data processing constant $s_*(X;Y)$ of two random variables X, Y is defined by

$$s_*(X;Y) := \sup_{\substack{p(u|x)\\I(U;X)\neq 0}} \frac{I(U;Y)}{I(U;X)}$$

Corollary 2. Let $\{S_T\}_T$ be a symmetric layered function family on mutually independent and identically distributed random variables X_1, \ldots, X_n . Then

$$s_*(S_{[1:n]}; S_T) \le \frac{n - |T|}{n} s_*(S_{[1:n]}; S_{\emptyset}) + \frac{|T|}{n}$$

for all $T \subseteq [1:n]$.

Proof. Fix any U satisfying the Markov chain $U \to S_{[1:n]} \to S_T$. Define a random variable \tilde{U} , satisfying the Markov chain $\tilde{U} \to S_{[1:n]} \to (S_{\emptyset}, X_{[1:n]})$, according to

$$p_{\tilde{U}|S_{[1:n]}}(u|s) := p_{U|S_{[1:n]}}(u|s)$$

Indeed \tilde{U} also satisfies the Markov chain $\tilde{U} \to S_{[1:n]} \to S_T$ since S_T is a function of $(S_{\emptyset}, X_{[1:n]})$. Hence the distributions of $(U, S_{[1:n]}, S_T)$ and $(\tilde{U}, S_{[1:n]}, S_T)$ are the same. Therefore,

$$\frac{I(U; S_T)}{I(U; S_{[1:n]})} = \frac{I(\tilde{U}; S_T)}{I(\tilde{U}; S_{[1:n]})} \\
\stackrel{\text{(a)}}{\leq} \frac{n - |T|}{n} \frac{I(\tilde{U}; S_{\emptyset})}{I(\tilde{U}; S_{[1:n]})} + \frac{|T|}{n} \\
\leq \frac{n - |T|}{n} s_*(S_{[1:n]}; S_{\emptyset}) + \frac{|T|}{n},$$

where (a) is an application of Proposition 2.

Remark 10. Observe that this result generalizes the one in [6] from sums of mutually independent and identically distributed random variables to the more general symmetric layered function families. The proof technique used here is clearly motivated by the arguments in [6].

Corollary 3. Let S be a cyclically symmetric function on mutually independent and identically distributed random variables X_1, \ldots, X_n . Then $s_*(S; X_{[1:k]}) \leq \frac{k}{n}$ for all $k = 1, \ldots, n$.

Proof. This is immediate from Proposition 3.

2) Maximal correlation: The Hirschfeld-Gebelein-Rényi maximal correlation measures the dependence between two random variables in a general probability space. This quantity is first introduced by Hirschfeld [30] and Gebelein [31] and then studied by Rényi [32].

Definition 8. The Hirschfeld–Gebelein–Rényi maximal correlation $\rho_m(X;Y)$ of two random variables X, Y is defined by

$$\rho_m(X;Y) := \sup_{\substack{f, g \text{ real-valued measurable} \\ \mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0 \\ \mathbb{E}[f(X)^2] = \mathbb{E}[g(X)^2] = 1}} \mathbb{E}[f(X)g(Y)].$$

An alternative expression for the quantity is formulated by Rényi [32] as follows.

Proposition 4 (Rényi [32]). Let X, Y be random variables. Then

$$\rho_m(X;Y) = \sup_{\substack{f \text{ real-valued measurable} \\ \mathcal{E}[f(X)]=0\\ \mathcal{E}[f(X)^2]=1}} \mathcal{E}[\mathcal{E}[f(X)|Y]^2]^{1/2}.$$

Corollary 4. Let $\{S_T\}_T$ be a symmetric layered function family on mutually independent and identically distributed random variables X_1, \ldots, X_n . Then

$$\rho_m(S_{[1:n]}; S_T)^2 \le \frac{n - |T|}{n} \rho_m(S_{[1:n]}; S_{\emptyset})^2 + \frac{|T|}{n}$$

for all $T \subseteq [1:n]$.

Proof. By Corollary 1 (i), for any bounded real-valued measurable function f such that $E[f(S_{[1:n]})] = 0$ and $E[f(S_{[1:n]})^2] = 1$ we have

$$\begin{split} & \mathbf{E}[\mathbf{E}[f(S_{[1:n]})|S_T]^2] \\ & \leq \frac{n-|T|}{n} \mathbf{E}[\mathbf{E}[f(S_{[1:n]})|S_{\emptyset}]^2] + \frac{|T|}{n} \mathbf{E}[f(S_{[1:n]})^2] \\ & \leq \frac{n-|T|}{n} \rho_m(S_{[1:n]};S_{\emptyset})^2 + \frac{|T|}{n}. \end{split}$$

Taking supremum over f yields the result.

3) KL divergence inequality: The KL divergence inequalities obtained in Corollary 1 (ii) imply, by choosing X_1, \ldots, X_n to follow Poisson distribution, certain new convexity results concerning the KL divergence of binomial distribution given a Poisson distribution. Our results have a similar flavor to a conjecture of Yu (Conjecture 1 of [33]) who conjectured that $N \mapsto D_{\text{KL}}$ (Binomial $(N, \frac{\lambda}{N}) \| \text{Poisson}(\lambda)$) is completely monotonic. Even the convexity of this function is yet to be proven.

The following lemma is well-known and we present a proof here for completeness.

Lemma 11. Suppose $X_1 \sim \text{Poisson}(\lambda_1)$ and $X_2 \sim$ Poisson(λ_2) are independent and $Y \sim \text{Binomial}(N, \mu)$. Then the random variable \tilde{Y} defined by

$$p_{\tilde{Y}}(\tilde{y}) := \sum_{y} p_{X_1|X_1+X_2}(\tilde{y}|y) p_Y(y)$$
satisfies $\tilde{Y} \sim \text{Binomial}\left(N, \frac{\lambda_1}{\lambda_1+\lambda_2}\mu\right)$.

Proof. We first compute

$$p_{X_1|X_1+X_2}(\tilde{y}|y) = \frac{p_{X_1}(y)p_{X_2}(y-y)}{p_{X_1+X_2}(y)} = {\binom{y}{\tilde{y}}} \frac{\lambda_1^{\tilde{y}}\lambda_2^{y-\tilde{y}}}{(\lambda_1+\lambda_2)^y}.$$

(~)

Then

$$p_{\tilde{Y}}(\tilde{y}) = \sum_{y} p_{X_{1}|X_{1}+X_{2}}(\tilde{y}|y)p_{Y}(y)$$

$$= \sum_{y=\tilde{y}}^{N} {\binom{y}{\tilde{y}}} \frac{\lambda_{1}^{\tilde{y}}\lambda_{2}^{y-\tilde{y}}}{(\lambda_{1}+\lambda_{2})^{y}} {\binom{N}{y}} \mu^{y}(1-\mu)^{N-y}$$

$$= {\binom{N}{\tilde{y}}} \left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\mu\right)^{\tilde{y}}$$

$$\sum_{y=\tilde{y}}^{N} {\binom{N-\tilde{y}}{y-\tilde{y}}} \left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\mu\right)^{y-\tilde{y}} (1-\mu)^{N-y}$$

$$= {\binom{N}{\tilde{y}}} \left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\mu\right)^{\tilde{y}} \left(1-\mu+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\mu\right)^{N-\tilde{y}}$$

$$= {\binom{N}{\tilde{y}}} \left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\mu\right)^{\tilde{y}} \left(1-\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\mu\right)^{N-\tilde{y}}$$
so required.

as required.

Corollary 5. Let $N \ge 0$, $\tilde{\lambda}, \lambda \ge 0$ and $0 \le \mu \le 1$. For $k = 0, 1, \ldots, n$ let

 $\varphi_k :=$

$$D_{\mathrm{KL}}\left(\operatorname{Binomial}\left(N, \frac{\tilde{\lambda} + \lambda k}{\tilde{\lambda} + \lambda n}\mu\right) \right\| \operatorname{Poisson}\left(\tilde{\lambda} + \lambda k\right)\right).$$

Then

$$\varphi_{k-1} + \varphi_{k+1} \ge 2\varphi_k$$

for all
$$k = 1, ..., n - 1$$
, and

$$\varphi_k \le \frac{n-k}{n}\varphi_0 + \frac{k}{n}\varphi_n$$

for all k = 0, 1, ..., n.

Proof. Let $S_{\emptyset} \sim \text{Poisson}(\lambda)$ and $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$ be mutually independent random variables. Let $S_T := S_{\emptyset} +$ $\sum_{i \in T} X_i$ for non-empty $T \subseteq [1:n]$. Note that $\{S_T\}_T$ forms a symmetric layered function family on X_1, \ldots, X_n . Also note that $S_T \sim \text{Poisson}(\lambda + \lambda |T|)$ and $S_{[1:n]} - S_T \sim \text{Poisson}(\lambda (n - \lambda |T|))$ |T|) are independent. Let S_T be defined as in Corollary 1 (ii) (with $q(\cdot) \sim \text{Binomial}(N, \mu)$). Applying Lemma 11, we have $\tilde{S}_T \sim \text{Binomial}\left(N, \frac{\tilde{\lambda} + \lambda |T|}{\tilde{\lambda} + \lambda n} \mu\right)$. The result then follows from Corollary 1 (ii).

Corollary 6. For all N > 0 and $\lambda > 0$, the function

 $t \mapsto D_{\mathrm{KL}}$ (Binomial (N, t) || Poisson (λt))

is convex on [0, 1].

Proof. This is immediate from Corollary 5 (with $\tilde{\lambda} = 0$ and $\mu = 1$) and continuity.

IV. CONCLUSION AND FUTURE WORK

One possible application of our main result is to discover possible connections between sumset inequalities in combinatorics and entropic inequalities in information theory. Sumset inequalities have been playing an important role in additive combinatorics. Several sumset inequalities have been shown to have entropic equivalents or analogues, for instance [20], [34], [35], and for some of these equivalent formulations, one can establish the combinatorial version from the entropic version and vice-versa.

Ruzsa has conjectured the sumset inequality (Conjecture 3.13 of [20]) that, if A_1, A_2, A_3, A_4 are finite subsets of some (possibly non-Abelian) group then

$$\max_{a_2 \in A_2, a_3 \in A_3} \left(|A_1 \circ A_2 \circ A_3| |A_1 \circ a_2 \circ A_3 \circ A_4| \\ |A_1 \circ A_2 \circ a_3 \circ A_4| |A_2 \circ A_3 \circ A_4| \right) \\ \geq |A_1 \circ A_2 \circ A_3 \circ A_4|^3,$$

where \circ denotes the group operation, and $A \circ B := \{a \circ b : a \in A, b \in B\}$ for any subsets A, B of the group. From our main result, however, the entropic analogue of this sumset inequality can be shown. Via an application of Theorem 1 (iii) (with $U := X_1 \circ X_2 \circ X_3 \circ X_4$ and $S_T := X_T$), we have that if X_1, X_2, X_3, X_4 are mutually independent random variables taking value in some (possibly non-Abelian) group then

$$H(X_1 \circ X_2 \circ X_3) + H(X_1 \circ X_2 \circ X_3 \circ X_4 | X_2) + H(X_1 \circ X_2 \circ X_3 \circ X_4 | X_3) + H(X_2 \circ X_3 \circ X_4) > 3H(X_1 \circ X_2 \circ X_3 \circ X_4).$$

Note that as [20] dealt with dependent random variables, they were not able to establish an entropic inequality that mimicked the previous conjecture (see the paragraph after Conjecture 3.13 in [20]).

In general, the sumset inequality that for subsets A_1, \ldots, A_n of some group,

$$\prod_{i=1}^{n} \max_{a_i \in A_i} |A_1 \circ \cdots \circ A_{i-1} \circ a_i \circ A_{i+1} \circ \cdots \circ A_n|$$

$$\geq |A_1 \circ \cdots \circ A_n|^{n-1},$$

is known to be true for Abelian groups (Theorem 9.3, Chapter 1 of [36]). For non-Abelian groups it is known to be true for $n \leq 3$ (Corollary 3.12 of [20]) while the other cases remain open (Problem 9.4, Chapter 1 of [36]). On the other hand, the corresponding entropic inequality that for mutually independent random variables X_1, \ldots, X_n ,

$$\sum_{i=1}^{n} H(X_1 \circ \cdots \circ X_n | X_i) \ge (n-1)H(X_1 \circ \cdots \circ X_n),$$

can be deduced from our main result for all n and (possibly non-Abelian) groups.

ACKNOWLEDGEMENTS

Chandra Nair wishes to thank Prof. Venkat Anantharam who brought to his attention the compression approach in [1]. The authors also wish to thank Qinghua Ding and Jinpei Zhao for interesting discussion related to this problem. The work described in this paper was fully supported by the following two grants from the Research Grants Council of the Hong Kong Special Administrative Region, China CUHK 14221822 and CUHK 14210120.

REFERENCES

- P. Balister and B. Bollobás, "Projections, entropy and sumsets," *Combinatorica*, vol. 32, no. 2, pp. 125–141, Mar 2012. [Online]. Available: https://doi.org/10.1007/s00493-012-2453-1
- [2] F. Chung, R. Graham, P. Frankl, and J. Shearer, "Some intersection theorems for ordered sets and graphs," *Journal of Combinatorial Theory, Series A*, vol. 43, no. 1, pp. 23–37, 1986. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0097316586900191
- [3] J. Radhakrishnan, "Entropy and counting," Computational mathematics, modelling and algorithms, vol. 146, 2003.
- [4] T. S. Han, "Nonnegative entropy measures of multivariate symmetric correlations," *Information and Control*, vol. 36, no. 2, pp. 133– 156, 1978. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0019995878902759
- [5] M. Madiman and P. Tetali, "Information inequalities for joint distributions, with interpretations and applications," *IEEE Transactions on Information Theory*, vol. 56, no. 6, pp. 2699–2713, 2010.
- [6] S. Kamath and C. Nair, "The strong data processing constant for sums of i.i.d. random variables," in *Information Theory (ISIT), 2015 IEEE International Symposium on*, June 2015, pp. 2550–2552.
- [7] T. A. Courtade, "Monotonicity of entropy and Fisher information: a quick proof via maximal correlation," *Commun. Inf. Syst.*, vol. 16, no. 2, pp. 111–115, 2016. [Online]. Available: https: //doi.org/10.4310/cis.2016.v16.n2.a2
- [8] S. Artstein, K. Ball, F. Barthe, and A. Naor, "Solution of Shannon's problem on the monotonicity of entropy," *Journal of the American Mathematical Society*, vol. 17, no. 4, pp. 975–982, 2004.
- [9] O. Johnson, "Maximal correlation and the rate of Fisher information convergence in the central limit theorem," *IEEE Transactions on Information Theory*, vol. 66, no. 8, pp. 4992–5002, 2020.
- [10] M. M. Madiman and A. R. Barron, "Generalized entropy power inequalities and monotonicity properties of information," *IEEE Trans. Inf. Theory*, vol. 53, no. 7, pp. 2317–2329, 2007. [Online]. Available: https://doi.org/10.1109/TIT.2007.899484
- [11] A. Stam, "Some inequalities satisfied by the quantities of information of Fisher and Shannon," *Information and Control*, vol. 2, no. 2, pp. 101–112, 1959. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0019995859903481
- [12] A. Dembo, A. Kagan, and L. A. Shepp, "Remarks on the maximum correlation coefficient," *Bernoulli*, vol. 7, no. 2, pp. 343–350, 04 2001. [Online]. Available: https://projecteuclid.org:443/euclid.bj/1080222081
- [13] T. Chan, "Recent progresses in characterising information inequalities," *Entropy*, vol. 13, no. 2, pp. 379–401, 2011. [Online]. Available: https://www.mdpi.com/1099-4300/13/2/379
- [14] M. Madiman, J. Melbourne, and P. Xu, "Forward and reverse entropy power inequalities in convex geometry," in *Convexity and Concentration*, E. Carlen, M. Madiman, and E. M. Werner, Eds. New York, NY: Springer New York, 2017, pp. 427–485.
- [15] Y. Polyanskiy and Y. Wu, "Strong data-processing inequalities for channels and bayesian networks," in *Convexity and Concentration*, E. Carlen, M. Madiman, and E. M. Werner, Eds. New York, NY: Springer New York, 2017, pp. 211–249.
- [16] R. Iyer, N. Khargonkar, J. Bilmes, and H. Asnani, "Generalized submodular information measures: Theoretical properties, examples, optimization algorithms, and applications," *IEEE Transactions on Information Theory*, vol. 68, no. 2, pp. 752–781, 2022.
- [17] I. Sason, "Information inequalities via submodularity and a problem in extremal graph theory," *Entropy*, vol. 24, no. 5, 2022. [Online]. Available: https://www.mdpi.com/1099-4300/24/5/597
- [18] C. Tian, "Inequalities for entropies of sets of subsets of random variables," in 2011 IEEE International Symposium on Information Theory Proceedings, 2011, pp. 1950–1954.

- [19] M. Madiman and F. Ghassemi, "Combinatorial entropy power inequalities: A preliminary study of the stam region," *IEEE Transactions on Information Theory*, vol. 65, no. 3, pp. 1375–1386, 2019.
- [20] M. Madiman, A. Marcus, and P. Tetali, "Entropy and set cardinality inequalities for partition-determined functions," *Random Structures & Algorithms*, vol. 40, no. 4, pp. 399–424, 2012. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20385
- [21] V. Anantharam, A. A. Gohari, S. Kamath, and C. Nair, "On maximal correlation, hypercontractivity, and the data processing inequality studied by Erkip and Cover," *CoRR*, vol. abs/1304.6133, 2013.
- [22] V. Anantharam, A. Gohari, S. Kamath, and C. Nair, "On hypercontractivity and a data processing inequality," in 2014 IEEE International Symposium on Information Theory (ISIT'2014), Honolulu, USA, Jun. 2014, pp. 3022–3026.
- [23] C. E. Shannon, "A mathermatical theory of communication," *Bell System Technical Journal*, vol. 27, pp. 379–423 and 623–656, July and October, 1948.
- [24] E. H. Lieb, "Proof of an entropy conjecture of Wehrl," *Communications in Mathematical Physics*, vol. 62, no. 1, pp. 35–41, 1978. [Online]. Available: https://doi.org/10.1007/BF01940328
- [25] D. Guo, S. Shamai, and S. Verdu, "Proof of entropy power inequalities via MMSE," in 2006 IEEE International Symposium on Information Theory, 2006, pp. 1011–1015.
- [26] O. Rioul, "Information theoretic proofs of entropy power inequalities," *IEEE Transactions on Information Theory*, vol. 57, no. 1, pp. 33–55, 2011.
- [27] T. A. Courtade, "Strengthening the entropy power inequality," in 2016 IEEE International Symposium on Information Theory (ISIT), 2016, pp. 2294–2298.
- [28] A. R. Barron, "Entropy and the central limit theorem," *The Annals of Probability*, vol. 14, no. 1, pp. 336–342, 1986. [Online]. Available: http://www.jstor.org/stable/2244098
- [29] J. Borwein and A. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, ser. CMS Books in Mathematics. Springer New York, 2005. [Online]. Available: https://books.google.com.hk/books?id= TXWzqEkAa7IC
- [30] O. Hirschfeld, "A connection between correlation and contingency," *Mathematical Proceedings of the Cambridge Philosophical Society*, vol. 31, pp. 520–524, 1935.
- [31] H. Gebelein, "Das statistische problem der korrelation als variations- und eigenwert-problem und sein zusammenhang mit der ausgleichungsrechnung," Zeitschrift für angew. Math. und Mech., vol. 21, pp. 364–379, 1941.
- [32] A. Rényi, "On measures of dependence," Acta. Math. Acad. Sci. Hung., vol. 10, pp. 441–451, 1959.
- [33] Y. Yu, "Monotonic convergence in an information-theoretic law of small numbers," *IEEE Transactions on Information Theory*, vol. 55, no. 12, pp. 5412–5422, 2009.
- [34] T. Tao, "Sumset and inverse sumset theory for Shannon entropy," Combinatorics, Probability and Computing, vol. 19, no. 4, pp. 603–639, Jul 2010. [Online]. Available: https://doi.org/10.1017/s0963548309990642
- [35] I. Kontoyiannis and M. Madiman, "Sumset and inverse sumset inequalities for differential entropy and mutual information," *IEEE Transactions* on Information Theory, vol. 60, no. 8, pp. 4503–4514, 2014.
- [36] "Cardinality inequalities," in *Combinatorial Number Theory and Additive Group Theory*, ser. Advanced Courses in Mathematics – CRM Barcelona. Basel, Switzerland: Birkhäuser, 2009.

Chin Wa (Ken) Lau is currently a Ph.D. student at the Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong. He obtained his B.Sc. in Mathematics and Information Engineering (First Class Honours), from The Chinese University of Hong Kong, Hong Kong, in 2020.

Chandra Nair is a Professor with the Information Engineering department at The Chinese University of Hong Kong. He also serves as the Programme Director of the undergraduate program on Mathematics and Information Engineering. He obtained his Bachelor's degree, B.Tech (EE), from IIT Madras (India) and his Ph.D. degree from the EE department of Stanford University. He is a Fellow of the IEEE. His recent research interests are in developing ideas, tools, and techniques to tackle families of combinatorial and non-convex optimization problems arising primarily in the information sciences.

David Ng is currently a Postdoctoral Fellow at the Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong. He obtained his Ph.D. in Information Engineering, B.Eng. in Information Engineering (First Class Honours) and B.Sc. in Mathematics (First Class Honours), all from The Chinese University of Hong Kong, Hong Kong, in 2021, 2016 and 2015, respectively.