
A mutual information inequality and some applications

Ken Lau Chandra Nair David Ng

Abstract

In this paper we derive an inequality relating linear combinations of mutual information between subsets of mutually
independent random variables and an auxiliary random variable. As corollaries of this inequality, we obtain new results
and generalizations and new proofs of known results.

1 Introduction

In this paper we obtain an information inequality relating linear combinations of mutual information between
subsets of mutually independent random variables and an auxiliary random variable. Our main result is a
rather elementary inequality which surprisingly implies a variety of non-trivial inequalities and yields new
inequalities. We are directly motivated by the work of Balister and Bollobás [1] who present generalizations of
Shearer’s lemma [2, 3], Han’s inequality [4], and the Madiman–Tetali inequality [5]. We obtain a compression
type inequality similar to Theorem 4.2 of [1], generalizing the work in [6]. We are also motivated by the work
of Courtade [7] who presents an elementary proof of monotonicity of entropy power and Fisher information
which was originally established by Artstein, Ball, Barthe and Naor [8]. Using a certain perturbative auxiliary,
we recover the generalized Stam’s inequality [9], which extends Stam’s inequality for Fisher information [10]
and the Artstein–Ball–Barthe–Naor inequality [8], as a corollary of our main result. We also extend the results
involving maximal correlation in [11], strong data-processing constants in [6], and obtain new relative entropy
convexity results.

1.1 Main

Throughout this article we adapt the following notations. We denote by [a : b] the set of integers ≥ a and ≤ b.
We denote by |T | the cardinality of a set T . For random variables X1, . . . , Xn and for T ⊆ [1 : n], we write
XT := {Xi}i∈T , the tuple consisting of Xi where i ∈ T .

Definition 1. Let n be a positive integer and let {αT }T , {βT }T be two finite sequences of non-negative real
numbers indexed by T ⊆ [1 : n]. We call {βT }T an elementary compression of {αT }T if there exist A,B ⊆ [1 : n]
with A 6⊆ B and B 6⊆ A, and 0 ≤ δ ≤ min{αA, αB} such that for all T ⊆ [1 : n] we have

βT =


αT − δ if T = A or T = B,

αT + δ if T = A ∪B or T = A ∩B,

αT otherwise.

The result of a finite sequence of elementary compressions of {αT }T is called a compression of {αT }T .

Definition 2. Let Xi (i = 1, . . . , n) and ST (T ⊆ [1 : n]) be random variables. We call {ST }T a layered function
family on X1, . . . , Xn if S∅ is independent of X[1:n], and for every non-empty T ⊆ [1 : n] and i ∈ T there is a
function gT,i such that ST = gT,i(ST\{i}, Xi).

Remark 1. Clearly a trivial example of a layered function family is given by ST := (S∅, XT ). A canonical
example of a layered function family is given by ST := S∅+

∑
i∈T fi(Xi), where fi’s are functions taking values

in some Abelian monoid. In particular,

(i) ST := S∅ +
∑
i∈T Xi, where S∅, Xi ∈ Rd;

(ii) ST := max({S∅} ∪ {Xi}i∈T ), where S∅, Xi ∈ R;

are examples of layered function families.

The following is a subclass of layered function families that we will also be considering in this article.
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Definition 3. Let {ST }T be a layered function family on mutually independent and identically distributed
random variables X1, . . . , Xn. We call the layered function family {ST }T symmetric if for all permutations π
of [1 : n] the distributions of (S[1:n], S∅, X1, . . . , Xn) and (S[1:n], S∅, Xπ(1), . . . , Xπ(n)) are the same.

Remark 2. If X1, . . . , Xn are mutually independent and identically distributed random variables, Remark 1 (i)
and (ii) are examples of symmetric layered function families.

Lemma 1. Let {ST }T be a layered function family on mutually independent random variables X1, . . . , Xn.
Suppose U → S[1:n] → (S∅, X[1:n]) forms a Markov chain. Then the following hold:

(i) U → ST → (S∅, XT ) forms a Markov chain for all T ⊆ [1 : n].

(ii) I(U ;ST ) = I(U ;S∅, XT ) for all T ⊆ [1 : n].

Proof. Suppose T ⊆ [1 : n]. Consider

0
(a)
= I(U ;S∅, X[1:n]|S[1:n])

= I(U ;S∅, XT , X[1:n]\T |S[1:n])

(b)
= I(U ;S∅, XT , X[1:n]\T , ST |S[1:n])

≥ I(U ;S∅, XT |S[1:n], X[1:n]\T , ST )

(c)
= I(U ;S∅, XT |X[1:n]\T , ST )

(d)
= I(U ;S∅, XT |X[1:n]\T , ST ) + I(X[1:n]\T ;S∅, XT |ST )

= I(U,X[1:n]\T ;S∅, XT |ST )

≥ I(U ;S∅, XT |ST )

≥ 0,

where (a) holds since U → S[1:n] → (S∅, X[1:n]) forms a Markov chain, (b) holds since ST is a function of
(S∅, XT ), (c) holds since S[1:n] is a function of (ST , X[1:n]\T ), and (d) holds since X[1:n]\T and (S∅, XT , ST ) are
independent. This shows (i). Furthermore,

I(U ;ST )
(a)
= I(U ;ST , S∅, XT )

(b)
= I(U ;S∅, XT ),

where (a) holds since U → ST → (S∅, XT ) forms a Markov chain, and (b) holds since ST is a function of
(S∅, XT ). This shows (ii).

We now state the main theorem. As the proof below shows (and similar to the case in [1]), the main
ingredient is an elementary two-point inequality shown in part (i) below.

Theorem 1. Let {ST }T be a layered function family on mutually independent random variables X1, . . . , Xn.
Suppose U → S[1:n] → (S∅, X[1:n]) forms a Markov chain. Then the following hold:

(i) I(U ;SA) + I(U ;SB) ≤ I(U ;SA∪B) + I(U ;SA∩B) for all A,B ⊆ [1 : n].

(ii)
∑
T⊆[1:n] αT I(U ;ST ) ≤

∑
T⊆[1:n] βT I(U ;ST ), where αT , βT (T ⊆ [1 : n]) are non-negative real numbers

such that {βT }T is a compression of {αT }T .

(iii)
∑
T⊆[1:n] βT I(U ;ST ) ≤ I(U ;S[1:n])+(c−1)I(U ;S∅), where βT (T ⊆ [1 : n]) are non-negative real numbers

satisfying
∑
T⊆[1:n]:T3i βT ≤ 1 for all i = 1, . . . , n, and c :=

∑
T⊆[1:n] βT .

Proof. Suppose A,B ⊆ [1 : n]. Then

I(U ;S∅, XB)− I(U ;S∅, XA∩B) = I(U ;XB\A|S∅, XA∩B)

≤ I(U,XA\B ;XB\A|S∅, XA∩B)

(a)
= I(U,XA\B ;XB\A|S∅, XA∩B)− I(XA\B ;XB\A|S∅, XA∩B)

= I(U ;XB\A|S∅, XA)

= I(U ;S∅, XA∪B)− I(U ;S∅, XA),
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where (a) holds by the mutual independence of the Xi’s and S∅. Rearranging gives

I(U ;S∅, XA) + I(U ;S∅, XB) ≤ I(U ;S∅, XA∪B) + I(U ;S∅, XA∩B),

which, together with part (ii) of Lemma 1, gives (i). Note that (ii) is immediate from (i) as a compression is
obtained as a sequence of elementary compressions.

We will show (iii) by induction on n. Indeed the base case n = 1 is trivial. Note that (i) gives

I(U ;S[1:n−1]) + I(U ;ST∪{n}) ≤ I(U ;S[1:n]) + I(U ;ST )

for all T ⊆ [1 : n − 1]. Suppose βT (T ⊆ [1 : n]) are non-negative real numbers satisfying
∑
T⊆[1:n]:T3i βT ≤ 1

for all i = 1, . . . , n. Then∑
T⊆[1:n]

βT I(U ;ST ) =
∑

T⊆[1:n−1]

(
βT I(U ;ST ) + βT∪{n}I(U ;ST∪{n})

)
≤

∑
T⊆[1:n−1]

(
βT I(U ;ST ) + βT∪{n}(I(U ;S[1:n])− I(U ;S[1:n−1]) + I(U ;ST ))

)
(a)

≤ I(U ;S[1:n])− I(U ;S[1:n−1]) +
∑

T⊆[1:n−1]

(βT + βT∪{n})I(U ;ST )

(b)

≤ I(U ;S[1:n])− I(U ;S[1:n−1]) + I(U ;S[1:n−1]) + (c− 1)I(U ;S∅)

= I(U ;S[1:n]) + (c− 1)I(U ;S∅),

where (a) holds since
∑
T⊆[1:n−1] βT∪{n} ≤ 1, and (b) follows by applying the induction hypothesis to the

non-negative real numbers
{
βT + βT∪{n}

}
T⊆[1:n−1].

1.2 Two families of perturbative auxiliaries

In this section we will present two families of auxiliaries that will turn out to be useful for obtaining corollaries
to Theorem 1.

Lemma 2. Let {ST }T be a layered function family on mutually independent random variables X1, . . . , Xn.
Suppose f is an Rd-valued bounded measurable function, defined on the set of values of S[1:n], such that

E[f(S[1:n])] = 0. Then there exists a family of random variables {U (ε)}ε, indexed by small enough ε > 0,

such that U (ε) → S[1:n] → (S∅, X[1:n]) forms a Markov chain and

I(U (ε);ST ) =
1

2
ε2 E[‖E[f(S[1:n])|ST ]‖2] +O(ε3)

for all T ⊆ [1 : n].

Proof. Let p̃(·) be the probability mass function of the uniform distribution on the Boolean hypercube {±1}d.
For small enough ε > 0, define the random variable U (ε) taking values in {±1}d, satisfying the Markov chain
U (ε) → S[1:n] → (S∅, X[1:n]), according to

pU(ε)|S[1:n]
(u|s) := p̃(u)(1 + ε〈f(s), u〉).

Note that pU(ε)(u) = p̃(u) (which follows from E[f(S[1:n])] = 0), E[U (ε)] = 0 and E[U (ε)U (ε)T ] = I. For any

T ⊆ [1 : n], since U (ε) → S[1:n] → ST forms a Markov chain,

pU(ε)|ST (u|ST ) = E[pU(ε)|S[1:n]
(u|S[1:n])|ST ]

= p̃(u)(1 + ε〈E[f(S[1:n])|ST ], u〉).
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Then we have

I(U (ε);ST ) = EU(ε),ST

[
log

p(U (ε)|ST )

p(U (ε))

]
= EU(ε),ST

[
log(1 + ε〈E[f(S[1:n])|ST ], U (ε)〉)

]
= EST

[∑
u

p̃(u)(1 + ε〈E[f(S[1:n])|ST ], u〉) log(1 + ε〈E[f(S[1:n])|ST ], u〉)

]

= EST

[∑
u

p̃(u)

(
ε〈E[f(S[1:n])|ST ], u〉+

1

2
ε2〈E[f(S[1:n])|ST ], u〉2 +O(ε3)

)]

=
1

2
ε2 tr

(
E[E[f(S[1:n])|ST ] E[f(S[1:n])|ST ]T ] ·

∑
u

p̃(u)uuT

)
+O(ε3)

=
1

2
ε2 E[‖E[f(S[1:n])|ST ]‖2] +O(ε3).

Lemma 3. Let {ST }T be a layered function family on mutually independent random variables X1, . . . , Xn.
Suppose q(·) is a distribution absolutely continuous with respect to the distribution of S[1:n]. Then there exists a

family of random variables {U (ε)}ε, indexed by small enough ε > 0, such that U (ε) → S[1:n] → (S∅, X[1:n]) forms
a Markov chain and

I(U (ε);ST ) = εDKL(pS̃T ‖pST ) +O(ε2)

for all T ⊆ [1 : n], where the random variable S̃T is defined by

pS̃T (s̃) :=
∑
s

pST |S[1:n]
(s̃|s)q(s).

Proof. Let f(s) := q(s)/pS[1:n]
(s) be the Radon–Nikodym derivative. For small enough ε > 0, define the random

variable U (ε) taking values in {0, 1}, satisfying the Markov chain U (ε) → S[1:n] → (S∅, X[1:n]), according to

pU(ε)|S[1:n]
(u|s) :=

{
1− εf(s) if u = 0,

εf(s) if u = 1.

Note that E[f(S[1:n])] = 1 and

pU(ε)(u) =

{
1− ε if u = 0,

ε if u = 1.

For any T ⊆ [1 : n], since U (ε) → S[1:n] → ST forms a Markov chain,

pU(ε)|ST (u|ST ) = E[pU(ε)|S[1:n]
(u|S[1:n])|ST ]

=

{
1− εE[f(S[1:n])|ST ] if u = 0,

εE[f(S[1:n])|ST ] if u = 1.

Then we have

I(U (ε);ST )

= EU(ε),ST

[
log

p(U (ε)|ST )

p(U (ε))

]
= EST

[
εE[f(S[1:n])|ST ] log E[f(S[1:n])|ST ] + (1− εE[f(S[1:n])|ST ]) log

1− εE[f(S[1:n])|ST ]

1− ε

]
= εEST

[
pS̃T (ST )

pST (ST )
log

pS̃T (ST )

pST (ST )

]
+ EST

[
(1− εE[f(S[1:n])|ST ])(ε(1− E[f(S[1:n])|ST ]) +O(ε2))

]
= εDKL(pS̃T ‖pST ) +O(ε2).

Remark 3. These two families of perturbative auxiliaries are not new here and have been used extensively
in [12,13] and references therein.
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2 Some consequences of Theorem 1

2.1 Generalized Stam Inequality

In this subsection, we show a generalized Stam inequality involving Fisher information as an immediate conse-
quence of our mutual information inequality. The results established in this section are not new, and a similar
proof technique we employ has been used by Courtade in [7] for the case of mutually independent and identically
distributed random variables. However, as noted in [14] (Future work, item 4), the extension of the ideas to
independent random variables had been of interest. The proof in this section does the extension to independent
random variables.

Definition 4. Let X be a random variable in Rd with density fX . The score function ρX of X is defined by

ρX :=
∇fX
fX

= ∇ log fX .

The Fisher information J(X) of X is defined by

J(X) := E[‖ρX(X)‖2].

Remark 4. Let X,Z be independent random variables in Rd such that Z ∼ N (0, I). We have the following
basic properties of Fisher information:

(i) J(aX) = a−2J(X) for all a > 0.

(ii) 1
2J(X +

√
tZ) = ∂

∂th(X +
√
tZ) for all t ≥ 0.

(iii) If X has a (finite) covariance matrix then

h(X) =
d

2
log 2πe− 1

2

∫ ∞
0

(
J(X +

√
tZ)− d

1 + t

)
dt.

Property (ii) is also called de Bruijn’s identity (e.g. [10]). Property (iii) is a consequence of (ii) and is originally
shown by Barron [15] (cf. Lemma 3 of [9]).

Remark 5. The Fisher information of sum of independent random variables satisfies a certain property that is
first observed by Stam [10]: If X1, X2 are independent random variables in Rd with densities f1, f2, respectively,
then

ρX1+X2
(y) =

∇(f1 ∗ f2)(y)

(f1 ∗ f2)(y)

=
(∇f1 ∗ f2)(y)

(f1 ∗ f2)(y)

=
(ρX1f1 ∗ f2)(y)

(f1 ∗ f2)(y)

=

∫
ρX1(x1)f1(x1)f2(y − x1) dx1∫

f1(x1)f2(y − x1) dx1

= E[ρX1(X1)|X1 +X2 = y],

and hence

ρX1+X2(X1 +X2) = E[ρX1(X1)|X1 +X2].

In general, suppose X1, . . . , Xn are mutually independent random variables in Rd with densities, and write
Sk := X1 + · · ·+Xk. Then

ρSn(Sn) = E[ρSk(Sk)|Sn]

for all k = 1, . . . , n.

Lemma 4. Let X1, . . . , Xn be mutually independent random variables in Rd with densities. For k = 1, . . . , n
we write Sk := X1 + · · ·+Xk. Then

E[‖E[ρSn(Sn)|Sk]‖2] ≥ J(Sn)2

J(Sk)

for all k = 1, . . . , n.
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Proof. Consider

J(Sn) = E[‖ρSn(Sn)‖2]

= E[〈ρSn(Sn),E[ρSk(Sk)|Sn]〉]
= E[E[〈ρSn(Sn), ρSk(Sk)〉|Sn]]

= E[〈ρSn(Sn), ρSk(Sk)〉]
= E[E[〈ρSn(Sn), ρSk(Sk)〉|Sk]]

= E[〈E[ρSn(Sn)|Sk], ρSk(Sk)〉]
(a)

≤ E[‖E[ρSn(Sn)|Sk]‖2]1/2 E[‖ρSk(Sk)‖2]1/2

= E[‖E[ρSn(Sn)|Sk]‖2]1/2J(Sk)1/2,

where (a) follows from the Cauchy–Schwarz inequality. This gives the result.

Proposition 1 (Generalized Stam’s inequality, Theorem 2 of [9]). Let X1, . . . , Xn be mutually independent
random variables in Rd with densities. Suppose βT (T ⊆ [1 : n]) are non-negative real numbers satisfying∑
T⊆[1:n]:T3i βT ≤ 1 for all i = 1, . . . , n. Then

1

J(S[1:n])
≥

∑
T⊆[1:n]

βT
1

J(ST )
,

where ST :=
∑
i∈T Xi.

Proof. Note that S∅ = 0. An application of Lemma 2 (with f = ρS[1:n]
) gives the existence of a family of random

variables {U (ε)}ε, indexed by small enough ε > 0, such that U (ε) → S[1:n] → X[1:n] forms a Markov chain and

I(U (ε);ST ) =
1

2
ε2 E[‖E[ρS[1:n]

(S[1:n])|ST ]‖2] +O(ε3) (1)

for all T ⊆ [1 : n]. Then Theorem 1 (iii) implies∑
T⊆[1:n]

βT I(U (ε);ST ) ≤ I(U (ε);S[1:n]). (2)

Now consider

J(S[1:n]) = E[‖ρS[1:n]
(S[1:n])‖2]

(a)

≥
∑

T⊆[1:n]

βT E[‖E[ρS[1:n]
(S[1:n])|ST ]‖2]

(b)

≥
∑

T⊆[1:n]

βT
J(S[1:n])

2

J(ST )
,

where (a) is obtained by putting (1) into (2), dividing by 1
2ε

2 and then taking ε → 0, and (b) follows from
Lemma 4. The result then follows from rearranging.

Remark 6. Proposition 1 implies the fractional superadditivity of entropy power [16] (see also [9]). On the
other hand, one immediately obtains the Artstein–Ball–Barthe–Naor inequality [8]: If X1, . . . , Xn are mutually
independent and identically distributed random variables in Rd with densities, then for all k = 1, . . . , n,

(i) J
(
X1+···+Xn√

n

)
≤ J

(
X1+···+Xk√

k

)
;

(ii) h
(
X1+···+Xn√

n

)
≥ h

(
X1+···+Xk√

k

)
, if Xi’s have a finite covariance matrix;

where (i) follows from setting βT = 0 for |T | 6= k in Proposition 1, and (ii) is a consequence of (i) and Remark
4 (iii).
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2.2 Discrete Convexity, Strong Data Processing and Maximal Correlation

In this subsection, we establish some discrete convexity results and consequently some results about strong
data-processing constants and maximal correlations of joint distributions. The results in this section generalize
the known results in [6] and [11].

Lemma 5 (Discrete convexity). Suppose ϕk (k = 0, 1, . . . , n) are real numbers satisfying

ϕk−1 + ϕk+1 ≥ 2ϕk (3)

for all k = 1, . . . , n− 1. Then

ϕk ≤
n− k
n− l

ϕl +
k − l
n− l

ϕn

for all l = 0, 1, . . . , n− 1, and k satisfying l ≤ k ≤ n.

Proof. Note that k = n and l = k are immediate, so we assume l < k < n. Observe that ϕk − ϕk−1 is
nondecreasing in k. Then

ϕn − ϕk = (ϕn − ϕn−1) + (ϕn−1 − ϕn−2) + · · ·+ (ϕk+1 − ϕk)

≥ (n− k)(ϕk+1 − ϕk)

≥ (n− k)(ϕk − ϕk−1)

≥ n− k
k − l

((ϕk − ϕk−1) + (ϕk−1 − ϕk−2) + · · ·+ (ϕl+1 − ϕl))

=
n− k
k − l

(ϕk − ϕl).

The result follows by rearranging.

Proposition 2. Let {ST }T be a symmetric layered function family on mutually independent and identically
distributed random variables X1, . . . , Xn. Suppose U is a random variable such that U → S[1:n] → (S∅, X[1:n])
forms a Markov chain. Then I(U ;ST ) is a function of |T |, and we have

I(U ;ST ) + I(U ;ST∪{i,j}) ≥ I(U ;ST∪{i}) + I(U ;ST∪{j})

for all T ⊆ [1 : n] and distinct elements i, j in [1 : n] \ T . Furthermore,

I(U ;ST ) ≤ n− |T |
n

I(U ;S∅) +
|T |
n
I(U ;S[1:n])

for all T ⊆ [1 : n].

Proof. We first show that I(U ;ST ) is a function of |T |. It suffices to establish I(U ;ST ) = I(U ;S[1:|T |]) for all
T ⊆ [1 : n]. Take a permutation π of [1 : n], that is increasing on [1 : |T |], such that T = {π(i)}i=1,...,|T |. From
the definition of symmetric layered function family and the Markov chain U → S[1:n] → (S∅, X1, . . . , Xn), we

have that the distributions of (U, S∅, X1, . . . , Xn) and
(
U, S∅, Xπ(1), . . . , Xπ(n)

)
are the same. In particular, the

distributions of
(
U, S∅, X[1:|T |]

)
and (U, S∅, XT ) are the same. Hence Lemma 1 (ii) gives

I(U ;ST ) = I(U ;S∅, XT )

= I(U ;S∅, X[1:|T |])

= I(U ;S[1:|T |]).

Now we show that ϕk := I(U ;ST ), where T is any subset of [1 : n] of cardinality k, satisfies (3). For any
k = 1, . . . , n− 1, take any T ⊆ [1 : n] with |T | = k − 1 and distinct elements i, j in [1 : n] \ T , and we have

ϕk−1 + ϕk+1 = I(U ;ST ) + I(U ;ST∪{i,j})

(a)

≥ I(U ;ST∪{i}) + I(U ;ST∪{j})

= 2ϕk,
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where (a) follows from (i) of Theorem 1. Hence (3) is satisfied. Then an application of Lemma 5 (with l = 0)
yields

ϕk ≤
n− k
n

ϕ0 +
k

n
ϕn,

or equivalently,

I(U ;ST ) ≤ n− |T |
n

I(U ;S∅) +
|T |
n
I(U ;S[1:n])

for all T ⊆ [1 : n].

Corollary 1. Let {ST }T be a symmetric layered function family on mutually independent and identically
distributed random variables X1, . . . , Xn. Then the following hold:

(i) Suppose f is an Rd-valued bounded measurable function, defined on the set of values of S[1:n], such that
E[f(S[1:n])] = 0. Then

E[‖E[f(S[1:n])|ST ]‖2] ≤ n− |T |
n

E[‖E[f(S[1:n])|S∅]‖2] +
|T |
n

E[‖f(S[1:n])‖2]

for all T ⊆ [1 : n].

(ii) Suppose q(·) is a distribution absolutely continuous with respect to the distribution of S[1:n]. For T ⊆ [1 : n]

let the random variable S̃T be defined by

pS̃T (s̃) :=
∑
s

pST |S[1:n]
(s̃|s)q(s).

Then

DKL(pS̃T ‖pST ) +DKL(pS̃T∪{i,j}
‖pST∪{i,j}) ≥ DKL(pS̃T∪{i}

‖pST∪{i}) +DKL(pS̃T∪{j}
‖pST∪{j})

for all T ⊆ [1 : n] and distinct elements i, j in [1 : n] \ T . Furthermore,

DKL(pS̃T ‖pST ) ≤ n− |T |
n

DKL(pS̃∅
‖pS∅) +

|T |
n
DKL(pS̃[1:n]

‖pS[1:n]
)

for all T ⊆ [1 : n].

Proof. (i) and (ii) are direct applications of Lemma 2 and 3, respectively, to Proposition 2.

Definition 5. Let S be a function on mutually independent and identically distributed random variables
X1, . . . , Xn. We call S cyclically symmetric if for all cyclic shifts π of [1 : n] the distributions of (S,X1, . . . , Xn)
and (S,Xπ(1), . . . , Xπ(n)) are the same.

Remark 7. The function S :=
∑n
i=1XiXi+1 (with Xn+1 := X1), where Xi’s are mutually independent and

identically distributed random variables in R, is an example of cyclically symmetric function.

Proposition 3. Let S be a cyclically symmetric function on mutually independent and identically distributed
random variables X1, . . . , Xn. Suppose U is a random variable such that U → S → X[1:n] forms a Markov
chain. Then for all k = 1, . . . , n− 1 we have

I(U ;X[1:k−1]) + I(U ;X[1:k+1]) ≥ 2I(U ;X[1:k]).

Furthermore,

I(U ;X[1:k]) ≤
k

n
I(U ;S)

for all k = 0, 1, . . . , n.
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Proof. Since U → S → X[1:n] forms a Markov chain and S is a function of X[1:n], we have I(U ;S) = I(U ;X[1:n]).
Further from the cyclic symmetry of S and the Markov chain U → S → X[1:n], we have that the distributions
of (U, S,X1, X2, . . . , Xn) and (U, S,Xn, X1, . . . , Xn−1) are the same. Consequently, for all k = 0, . . . , n − 1 we
have I(U ;X[1:k+1]) = I(U ;X[1:k]∪{n}). Hence for k = 1, . . . , n− 1,

I(U ;X[1:k+1])− I(U ;X[1:k]) = I(U ;X[1:k]∪{n})− I(U ;X[1:k])

= I(U ;Xn|X[1:k])

(a)
= I(U ;Xn|X[1:k]) + I(Xk;Xn|X[1:k−1])

= I(U,Xk;Xn|X[1:k−1])

≥ I(U ;Xn|X[1:k−1])

= I(U ;X[1:k−1]∪{n})− I(U ;X[1:k−1])

= I(U ;X[1:k])− I(U ;X[1:k−1]),

where (a) holds since Xk is independent of X[1:k−1]∪{n}. Now ϕk := I(U ;X[1:k]) satisfies (3) and hence by
Lemma 5 (with l = 0) we have

I(U ;X[1:k]) ≤
k

n
I(U ;X[1:n])

=
k

n
I(U ;S)

as required.

2.2.1 Strong data processing constant

Definition 6. The strong data processing constant s∗(X;Y ) of two random variables X,Y is defined by

s∗(X;Y ) := sup
p(u|x)

I(U ;X)6=0

I(U ;Y )

I(U ;X)
.

Corollary 2. Let {ST }T be a symmetric layered function family on mutually independent and identically
distributed random variables X1, . . . , Xn. Then

s∗(S[1:n];ST ) ≤ n− |T |
n

s∗(S[1:n];S∅) +
|T |
n

for all T ⊆ [1 : n].

Proof. Fix any U satisfying the Markov chain U → S[1:n] → ST . Define a random variable Ũ , satisfying the

Markov chain Ũ → S[1:n] → (S∅, X[1:n]), according to

pŨ |S[1:n]
(u|s) := pU |S[1:n]

(u|s).

Indeed Ũ also satisfies the Markov chain Ũ → S[1:n] → ST since ST is a function of (S∅, X[1:n]). Hence the

distributions of (U, S[1:n], ST ) and (Ũ , S[1:n], ST ) are the same. Therefore,

I(U ;ST )

I(U ;S[1:n])
=

I(Ũ ;ST )

I(Ũ ;S[1:n])

(a)

≤ n− |T |
n

I(Ũ ;S∅)

I(Ũ ;S[1:n])
+
|T |
n

≤ n− |T |
n

s∗(S[1:n];S∅) +
|T |
n

,

where (a) is an application of Proposition 2.

Remark 8. Observe that this result generalizes the one in [6] from sums of mutually independent and identically
distributed random variables to the more general symmetric layered function families. The proof technique used
here is clearly motivated by the arguments in [6].

Corollary 3. Let S be a cyclically symmetric function on mutually independent and identically distributed
random variables X1, . . . , Xn. Then s∗(S;X[1:k]) ≤ k

n for all k = 1, . . . , n.

Proof. This is immediate from Proposition 3.
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2.2.2 Maximal correlation

The Hirschfeld–Gebelein–Rényi maximal correlation measures the dependence between two random variables
in a general probability space. This quantity is first introduced by Hirschfeld [17] and Gebelein [18] and then
studied by Rényi [19].

Definition 7. The Hirschfeld–Gebelein–Rényi maximal correlation ρm(X;Y ) of two random variables X,Y is
defined by

ρm(X;Y ) := sup
f, g real-valued measurable

E[f(X)]=E[g(Y )]=0

E[f(X)2]=E[g(X)2]=1

E[f(X)g(Y )].

An alternative expression for the quantity is formulated by Rényi [19] as follows.

Proposition 4 (Rényi [19]). Let X,Y be random variables. Then

ρm(X;Y ) = sup
f real-valued measurable

E[f(X)]=0

E[f(X)2]=1

E[E[f(X)|Y ]2]1/2.

Corollary 4. Let {ST }T be a symmetric layered function family on mutually independent and identically
distributed random variables X1, . . . , Xn. Then

ρm(S[1:n];ST )2 ≤ n− |T |
n

ρm(S[1:n];S∅)
2 +
|T |
n

for all T ⊆ [1 : n].

Proof. By Corollary 1 (i), for any bounded real-valued measurable function f such that E[f(S[1:n])] = 0 and
E[f(S[1:n])

2] = 1 we have

E[E[f(S[1:n])|ST ]2] ≤ n− |T |
n

E[E[f(S[1:n])|S∅]2] +
|T |
n

E[f(S[1:n])
2]

≤ n− |T |
n

ρm(S[1:n];S∅)
2 +
|T |
n

.

Taking supremum over f yields the result.

2.2.3 KL divergence inequality

Lemma 6. Suppose X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) are independent and Y ∼ Binomial(N,µ). Then
the random variable Ỹ defined by

pỸ (ỹ) :=
∑
y

pX1|X1+X2
(ỹ|y)pY (y)

satisfies Ỹ ∼ Binomial
(
N, λ1

λ1+λ2
µ
)

.

Proof. We first compute

pX1|X1+X2
(ỹ|y) =

pX1
(ỹ)pX2

(y − ỹ)

pX1+X2(y)

=

(
y

ỹ

)
λỹ1λ

y−ỹ
2

(λ1 + λ2)y
.
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Then

pỸ (ỹ) =
∑
y

pX1|X1+X2
(ỹ|y)pY (y)

=

N∑
y=ỹ

(
y

ỹ

)
λỹ1λ

y−ỹ
2

(λ1 + λ2)y

(
N

y

)
µy(1− µ)N−y

=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ N∑
y=ỹ

(
N − ỹ
y − ỹ

)(
λ2

λ1 + λ2
µ

)y−ỹ
(1− µ)

N−y

=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ (
1− µ+

λ2
λ1 + λ2

µ

)N−ỹ
=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ (
1− λ1

λ1 + λ2
µ

)N−ỹ
as required.

Corollary 5. Let N ≥ 0, λ̃, λ ≥ 0 and 0 ≤ µ ≤ 1. For k = 0, 1, . . . , n let

ϕk := DKL

(
Binomial

(
N,

λ̃+ λk

λ̃+ λn
µ

)∥∥∥∥∥Poisson
(
λ̃+ λk

))
.

Then

ϕk−1 + ϕk+1 ≥ 2ϕk

for all k = 1, . . . , n− 1, and

ϕk ≤
n− k
n

ϕ0 +
k

n
ϕn

for all k = 0, 1, . . . , n.

Proof. Let S∅ ∼ Poisson(λ̃) and X1, . . . , Xn ∼ Poisson(λ) be mutually independent random variables. Let
ST := S∅ +

∑
i∈T Xi for non-empty T ⊆ [1 : n]. Note that {ST }T forms a symmetric layered function

family on X1, . . . , Xn. Also note that ST ∼ Poisson(λ̃ + λ|T |) and S[1:n] − ST ∼ Poisson(λ(n − |T |)) are

independent. Let S̃T be defined as in Corollary 1 (ii) (with q(·) ∼ Binomial(N,µ)). Applying Lemma 6, we

have S̃T ∼ Binomial
(
N, λ̃+λ|T |

λ̃+λn
µ
)

. The result then follows from Corollary 1 (ii).

Corollary 6. For all N ≥ 0 and λ ≥ 0, the function

t 7→ DKL (Binomial (N, t)‖Poisson (λt))

is convex on [0, 1].

Proof. This is immediate from Corollary 5 (with λ̃ = 0 and µ = 1) and continuity.

Remark 9. The above result has a similar flavor to the open problem listed in https://archive.siam.org/

journals/categories/09-001.php where the author makes a complete monotonicity conjecture between bi-
nomial and Poisson distributions, but is unable to even prove the convexity. An interested reader may also see
Conjecture 1 in [20].
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