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On the Gaussian Z-Interference channel
Max Costa, Chandra Nair, and David Ng

Abstract

The optimality of Han-Kobayashi achievable region (with Gaussian signaling) remains an open problem for Gaussian inter-
ference channel. In this paper we focus on the Gaussian Z-interference channel. In this paper we first show that using correlated
(over time) Gaussian signals do not improve on the Han-Kobayashi achievable rate region. Secondly we compute the slope of the
Han and Kobayashi achievable region around the Sato’s corner point and provides outer bounds to the slope.

I. INTRODUCTION

Gaussian interference channel is one of the most basic multiuser settings whose capacity region is as yet undetermined. The
best known-achievable region for a two-receiver interference channel is due to Han and Kobayashi [7]. Recently it has been
shown that there are two-receiver interference channels with discrete alphabets where Han and Kobayashi region is strictly
inside the capacity region [11]. However for the Gaussian setting, the optimality of the Han and Kobayashi region (with
Gaussian auxiliaries) remains an open challenge.

In the discrete memoryless setting it was shown that a 2-letter extension (coding in blocks of two symbols) of the Han-
Kobayashi scheme strictly outperforms the single-letter (traditional) scheme. There has been some attempts, for instance see
[8], at using correlated Gaussians to improve on the Han and Kobayashi scheme for the interference channel.
Remark 1. It is worth mentioning that the authors in [8] erroneously claim that the rates they achieve outperform state-of-the-art
scheme. This is incorrect as they do not compare the rates to the Han and Kobayashi scheme with Gaussian signals and the
use of time-sharing variable, Q, to do power control. It was known since the work of one of the authors [3] that using Q to
do power control strictly improves the rate region. The sub-optimality of the region without power control can also be shown
by using perturbations along Hermite polynomials [1].

In this paper, the first main result that is presented is a proof that correlated Gaussian signaling does not improve on the
traditional scheme for the Gaussian interference channel. The second result that we show concerns evaluation of the slope of
the Han and Kobayashi region around a corner point known as Sato’s corner point.

A. Preliminaries

An interference channel is a model for communication where two point-to-point communications occur over a shared medium
causing interference. The particular channel model that we study in this paper is called the Gaussian Z-interference setting,
and the channel is described by:

Y1 = X1 + Z1 (1)
Y2 = X2 + aX1 + Z2.

Here Z1 and Z2 are Gaussian variables, each distributed as N (0, 1) and independent of X1 and X2. We further assume power
constraints P1, P2 on X1, X2 and that a ∈ (0, 1). (Note that if a = 0 or a ≥ 1, then the capacity region is fully determined;
hence this regime is the only interesting case.)
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Fig. 1. Gaussian Z interference channel

The capacity region for this setting is defined in the usual sense (see [5] for details and background work).
The Han-Kobayashi achievable region [7] for the interference channel can be found in Section of [5]. However when the

interference is one-sided (or Z), the the achievable region simplifies to the following.
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Theorem 1 (Han-Kobayashi Region). The union of rate pairs (R1, R2) satisfying the constraints

R1 ≤ I(X1;Y1|Q)

R2 ≤ I(X2;Y2|U1, Q)

R1 +R2 ≤ I(U1, X2;Y2|Q) + I(X1;Y1|U1, Q)

over distributions pQ(q)pU1,X1|Q(u1, x1|q)pX2|Q(x2|q) is achievable for a (discrete memoryless) Z-interference channel. To
achieve this reqion, it suffices to consider |Q| ≤ 3.

The above region will also yield an achievable region in the Gaussian Z-interference channel defined by (1). Further, for
every Q = q, if X1 = U1 + V1, where U1 and V1 are zero-mean independent Gaussian random variables, and X2 is also an
independent Gaussian random variable, then we call such a region as Han-Kobayashi region with Gaussian signaling.

Theorem 2 (Han-Kobayashi region with Gaussian signaling). The union of rate pairs (R1, R2) satisfying the constraints

R1 ≤ EQ

(
1

2
log (1 + P1Q)

)
R2 ≤ EQ

(
1

2
log

(
1 +

P2Q

1 + a2αQP1Q

))
R1 +R2 ≤ EQ

(
1

2
log (1 + αQP1Q) +

1

2
log

(
1 +

P2Q + a2(1− αQ)P1Q

1 + a2αQP1Q

))
over αQ ∈ [0, 1], P1Q, P2Q ≥ 0 satisfying EQ (P1Q) ≤ P1 and EQ (P2Q) ≤ P2 is achievable.

By Bunt’s extension of Caratheodory’s theorem, it suffices to consider |Q| ≤ 5. The region described by Theorem 2 will be
referred to as RHK .

By computing the Han-Kobayashi region with Gaussian signaling of the multi-letter extension of the Gaussian interference
channel the following region is achievable.

Theorem 3 (k-letter Han-Kobayashi region with Gaussian signaling). The union of rate pairs (R1, R2) satisfying the constraints

R1 ≤
1

k
EQ

(
1

2
log |I +K1Q|

)
R2 ≤

1

k
EQ

(
1

2
log
|I + a2KvQ +K2Q|
|I + a2KvQ|

)
R1 +R2 ≤

1

k
EQ

(
1

2
log |I +KvQ|+

1

2
log
|I + a2K1Q +K2Q|
|I + a2KvQ|

)
over K1q,K2q � 0,Kvq � K1q satisfying 1

k EQ(tr(K1Q)) ≤ P1 and 1
k EQ(tr(K2Q)) ≤ P2 is achievable.

By Bunt’s extension of Caratheodory’s theorem, it suffices to consider |Q| ≤ 5. The � relation is used to denote the positive
semi-definite partial order among real symmetric matrices; and tr(A) denotes the trace of matrix A. The region described by
Theorem 3 will be referred to as R(k)

HK . Clearly RHK ⊆ R(k)
HK ⊆ C, the capacity region.

1) Known results about the capacity region: In this section we summarize the previously known results about the capacity
region of the Gaussian Z-interference channel.

(i) It is known (from [3], [14], [13]) that the rate-pair R1 = 1
2 log(1 + P1) and R2 = 1

2 log
(
1 + P2

1+a2P1

)
, is a pareto-

optimal point on the boundary of the capacity region. Further it is also known that the above point maximizes the
rate-sum R1+R2. Since C1 = 1

2 log(1+P1) is the maximum achievable rate to receiver Y1, the capacity region contains
a line-segment that starts at (C1, 0) and ends at (C1,

1
2 log

(
1 + P2

1+a2P1

)
). We call this extremal point (corner point) as

Sato-point.
The outer bounds in [13] and [9] shows that the Sato-point also maximizes λR2 + R1 for any λ ≤ 1+a2P1

a2(1+P1)
. This

provides an outer bound to the slope of the capacity region around the Sato’s corner point. We will recover this result
in a self-contained manner for completeness.

(ii) It is known from (from [3], [12]) that the rate-pair R1 = 1
2 log

(
1 + a2P1

1+P2

)
and R2 = C2 = 1

2 log(1 + P2), is another
pareto-optimal point on the boundary of the capacity region. Hence the capacity region contains a line-segment that
starts at (0, C2) and ends at

(
1
2 log

(
1 + a2P1

1+P2

)
, 12 log

(
1 + P2

1+a2P1

))
. This extremal point (corner point) is called in

literature as Costa-point. The outer bound to the capacity region of the interference channel does not yield any finite
λ such that the maximum of λR2 + R1 over achievable rate pairs passes through the corner point. Two of the authors
computed the slope of Han-Kobayashi region around the Costa-point [4].
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B. Summary of our results

In this article we establish the following results.

Theorem 4. R(k)
HK = RHK ,∀k ≥ 1.

We show that the k-letter extension of the Han-Kobayashi region with Gaussian signaling does not improve on the single-letter
scheme.

Theorem 5. The largest value of λ such that the maximum of λR2 +R1 (with (R1, R2) ∈ RHK) occurs at the Sato point is
given by

λcr = min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
, λ∗
}

where λ∗ is the unique positive solution of h(λ∗) = 0, where

h(λ) := λ

(
log

(
1 +

P2

1 + a2P1

)
− (1− a2)P2

(1 + a2P1)(1 + a2P1 + P2)

)
+ log

(
1− a2P2(1 + P1)

(1 + a2P1)(1 + a2P1 + P2)
λ

)
.

II. CORRELATED GAUSSIANS DO NOT IMPROVE THE REGION

In this section we establish Theorem 4. Towards this end we make the following observations: both R(k)
HK and RHK are

convex regions, hence they can be characterized by the intersection of supporting hyperplanes. Further the hyperplane R1+R2

(to the capacity region) passes through the Sato-point, which is present in both R(k)
HK and RHK . Hence Theorem 4 is equivalent

to showing that for every λ > 1,
max

(R1,R2)∈R(k)
HK

λR2 +R1 = max
(R1,R2)∈RHK

λR2 +R1.

The above condition can be re-expressed in terms of matrices as

max
K1q,K2q�0,Kvq�K1q :

1
k EQ(tr(K1Q))≤P1,

1
k EQ(tr(K2Q))≤P2

EQ

( 1

2k
log |K2Q + a2K1Q + I|+ (α− 1)

2k
log |K2Q + a2KvQ + I|

+
1

2k
log |KvQ + I| − α

2k
log |a2KvQ + I|

)
(2)

= max
P1q,P2q�0,αq∈[0,1]:

EQ(tr(P1Q))≤P1,EQ(tr(P2Q))≤P2

EQ

(1
2
log |P2Q + a2P1Q + 1|+ (α− 1)

2
log |P2Q + a2αQP1Q + 1|

+
1

2
log |αQP1Q + 1| − α

2
log |a2αQP1Q + 1|

)
.

Identify Kuq := K1q −Kvq . It is immediate that equation (2) will follow from Theorem 6 by the following reasoning: for
every Q = q, Theorem 6 allows us to replace the matrices inside the expression by diagonal matrices, which then is just sum
of terms of the form appearing on the right-hand-side. Note the extra factor 1

k on the left hand-side changes this sum into a
convex combination and the equality is immediate.
Remark 2. The following notations will be used in the proof:
(i) Given a k × k matrix A, let λ(A) denote the set (unordered) of eigenvalues of A, and let λ↓(A) (λ↑(A)) denote the

k-tuple of eigenvalues of A arranged in decreasing (increasing) order respectively.
(ii) Given two vectors v, w, we say v � w if v majorizes w, i.e. if v[1] ≥ v[2] · · · ≥ v[k] is a non-increasing arrangement

of v and w[1] ≥ w[2] · · · ≥ w[k] is a non-increasing arrangement of w; then
m∑
l=1

v[l] ≥
m∑
l=1

w[l], 1 ≤ m ≤ k

with equality at m = k.

Theorem 6. The maximum of the expression

1

2
log |K2 + a2Kv + a2Ku + I|+ (α− 1)

2
log |K2 + a2Kv + I|

+
1

2
log |Kv + I| − α

2
log |a2Kv + I|
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where the k×k Hermitian matrices satisfy the constraints: K2,Ku,Kv � 0, tr(Ku+Kv) ≤ C1, tr(K2) ≤ C2 can be attained
by restricting K2,Ku,Kv to be diagonal matrices.

Proof. Suppose we fix the matrices K2 and Kv satisfying the trace constraint; then we must choose Ku so as to maximize
|K2 + a2Kv + a2Ku + I| subject to tr(Ku) ≤ C1 − tr(Kv).

If one further fixes the eigenvalues λ(Ku) then Fiedler’s bound [6] says that

|K2 + a2Kv + a2Ku + I| ≤
k∏
i=1

(
λ↓i (K2 + a2Kv + I) + a2λ↑i (Ku)

)
,

and clearly equality is achieved if the matrices K2+a
2Kv+ I and Ku share the same eigenvectors with eigenvalues λ↓i (K2+

a2Kv + I) and λ↑i (Ku), respectively. Hence we seek to maximize

k∏
i=1

(
λ↓i (K2 + a2Kv + I) + a2λ↑i (Ku)

)
,

subject to
∑k
i=1 λ

↑
i (Ku) ≤ C1 − tr(Kv) and λ↑i (Ku) ≥ 0. The optimal choice of this problem is the water-filling solution.

Denote the optimal choice as Kw
u ; then it is immediate that

λ↓i (K2 + a2Kv + I + a2Ku) = λ↓i (K2 + a2Kv + I) + a2λ↑i (K
w
u ), i = 1, .., k.

Let K∗2 be a diagonal matrix with entries ordered as λ↓i (K2), and K∗v be a diagonal matrix with entries ordered as λ↑i (Kv).
Applying Fiedler’s bound [6] we see that

|K2 + a2Kv + I| ≤
k∏
i=1

(
λ↓i (K2) + λ↑i (Kv) + 1

)
= |K∗2 + a2K∗v + I|. (3)

We now invoke the celebrated Lidskii-Weidlandt inequality (see (2.6) in survey article [2]) that establishes the majorization,

λ↓(K∗2 + a2K∗v + I) = λ↓(K2) + λ↑(a2Kv + I)� λ↓(K2 + a2Kv + I).

Let K∗,wu denote the diagonal water filling matrix corresponding to K∗2 + a2K∗v + I . Lemma 1 implies that

λ↓(K∗2 + a2K∗v + I +K∗,wu )� λ↓(K2 + a2Kv + I +Kw
u ).

Lemma 2 yields
|K∗2 + a2K∗v + I +K∗,wu | ≥ |K2 + a2Kv + I +Kw

u |. (4)

Since |Kv + I| =
∏k
i=1(1 + λi(Kv)) and |a2Kv + I| =

∏k
i=1(1 + a2λi(Kv)), we see that for a fixed choice of λ(Kv) and

λ(K2), the diagonal matrices K∗2 ,K
∗
v , and K∗,wu maximize the expression (term-by-term) in Theorem 6. Varying over the

choices of λ(Kv) and λ(K2) that satisfies the trace constraint establishes the theorem.

A. Lemmas regarding majorization and its applications

The following Lemma must be well-known but we cannot find an immediate reference, so we establish it below.

Lemma 1. [Waterfilling preserves majorization] Let v, u be vectors such that v � u. Let v′ and u′ denote the vectors obtained
after water-filling operation with a quantity of water W > 0. Then v′ � u′.

Proof. W.l.o.g. let v and u be arranged in non-increasing order. After waterfilling operation note that v′ and u′ is also in
decreasing order; and further they satisfy

v′i =

{
vi 1 ≤ i ≤ m
c m+ 1 ≤ i ≤ k

,

u′i =

{
ui 1 ≤ i ≤ n
c1 n+ 1 ≤ i ≤ k

.

Further, vm ≥ c ≥ vm+1, un ≥ c1 ≥ un+1, and W =
∑k
i=m+1(c− vi) =

∑k
i=n+1(c1 − ui).
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We divide the proof into two cases: m < n and m ≥ n.
Case 1: m < n. Note that

k∑
i=1

vi +W =

k∑
i=1

ui +W

=⇒
m∑
i=1

vi + (k −m)c =

n∑
i=1

ui + (k − n)c1 ≥
m∑
i=1

ui + (k −m)c1

≥
m∑
i=1

vi + (k −m)c1.

The first inequality is due to ui ≥ c1,m+1 ≤ i ≤ n, and the second inequality is from v � u. Hence c ≥ c1. Thus to establish
that v′ � u′, it suffices to show that

l∑
i=1

v′i ≤
l∑
i=1

u′i, m+ 1 ≤ i ≤ n,

as the rest of the choices of l are immediate from v � u, c ≥ c1, and that
∑k
i=1 v

′
i =

∑k
i=1 u

′
i.

We establish it by contradiction. Suppose lo is the first index in [m+ 1 : n] such that

m∑
i=1

vi +

lo∑
i=m+1

c =

lo∑
i=1

v′i >

lo∑
i=1

u′i =

lo∑
i=1

ui.

Hence it must be that c > ulo = u′lo , and since u′i is decreasing, c ≥ u′i, ∀i ≥ lo. This would imply that

k∑
i=1

v′i =

lo∑
i=1

v′i +

k∑
i=lo+1

c >

lo∑
i=1

u′i +

k∑
i=lo+1

u′i =

k∑
i=1

u′i,

a contradiction. This completes the proof in this case.

Case 2: m ≥ n. Note that

W =

k∑
i=m+1

(c− vi) =
k∑

i=n+1

(c1 − ui) ≥
k∑

i=m+1

(c1 − ui) ≥
k∑

i=m+1

(c1 − vi),

where the first inequality is due to c − ui ≥ 0, n + 1 ≤ i ≤ m, and the second inequality is from v � u, (tail of v larger
larger partial sum than tail of u). Thus c ≥ c1, as before. Similar to previous case, to establish that v′ � u′, it suffices to
show that

l∑
i=1

v′i ≤
l∑
i=1

u′i, n+ 1 ≤ i ≤ m,

as the rest of the choices of l are immediate from v � u, c ≥ c1, and that
∑k
i=1 v

′
i =

∑k
i=1 u

′
i. The proof follows again by

contradiction. Suppose lo is the first index in [n+ 1 : m] such that

lo∑
i=1

vi =

lo∑
i=1

v′i >

l0∑
i=1

u′i =

n∑
i=1

ui +

l0∑
i=n+1

c1.

Hence it must be that vl0 > c1, and since v′i is decreasing, v′i ≥ c1, ∀i ≥ l0. This would imply that

k∑
i=1

v′i =

lo∑
i=1

v′i +

k∑
i=lo+1

v′i >

lo∑
i=1

u′i +

k∑
i=lo+1

c1 =

k∑
i=1

u′i,

a contradiction. This completes the proof of the lemma.

Lemma 2. (see A.1.d, page 166 in [10]) Let A,B ≺ 0 and λ(A) � λ(B). Then
∏k
i=1 λi(A) = |A| � |B| =

∏k
i=1 λi(B).

It basically follows from the concavity of log(·) and the Hardy-Littlewood-Polya majorization inequality.
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III. CALCULATIONS

A. Outer Bound

B. Han-Kobayashi region with Gaussian signaling

For β > 1, the weighted sum-rate of the Han-Kobayashi region of a Z-interference channel can be computed as

max
R1,R2

(R1 + βR2)

= max
p(q)p1(u1x1|q)p2(x2|q)

{(β − 1)I(X2;Y2|U1Q) + I(U1X2;Y2|Q) + I(X1;Y1|U1Q)}

= max
p(q)p1(u1x1|q)p2(x2|q)

{I(X1X2;Y2|Q) + (β − 1)I(X2;Y2|U1Q)− I(X1;Y2|U1X2Q) + I(X1;Y1|U1Q)}

= CX1X2
{I(X1X2;Y2) + CX1

{(β − 1)I(X2;Y2)− I(X1;Y2|X2) + I(X1;Y1)}}

With Gaussian signaling, where X1 = U1+V1, U1 ∼ N (0, (1−α)Q1), V1 ∼ N (0, αQ1), X2 ∼ N (0, Q2) independent, the
weighted sum-rate for power (P1, P2) is the concave envelope of fβ (Q1, Q2) evaluated at (P1, P2), where fβ is defined by

fβ (Q1, Q2) :=
1

2
log(1 + a2Q1 +Q2) + max

α∈[0,1]

{
β

2
log

1 + a2αQ1 +Q2

1 + a2αQ1
+

1

2
log

1 + αQ1

1 + a2αQ1 +Q2

}
By taking derivative with respect to α, the optimal α = α∗ satisfies:

β =
1− a2 +Q2

a2Q2

(
a2 +

1− a2

1 + α∗Q1

)
We write

R1 =

{
(Q1, Q2) : β ≥

1− a2 +Q2

a2Q2

}
R2 =

{
(Q1, Q2) : β ≤

(1− a2 +Q2)(1 + a2Q1)

a2Q2(1 +Q1)

}
R3 =

{
(Q1, Q2) :

(1− a2 +Q2)(1 + a2Q1)

a2Q2(1 +Q1)
< β <

1− a2 +Q2

a2Q2

}
where R1,R2,R3 correspond to the cases α∗ = 0, α∗ = 1 and 0 < α∗ < 1 respectively.

This gives explicit expressions for fβ

fβ (Q1, Q2) =


1
2 log(1 + a2Q1 +Q2) +

β−1
2 log(1 +Q2) (Q1, Q2) ∈ R1

β
2 log(1 + Q2

1+a2Q1
) + 1

2 log(1 +Q1) (Q1, Q2) ∈ R2

1
2 log

1+a2Q1+Q2

a2Q2
+ β−1

2 log(β − 1)− β
2 log β + β

2 log 1−a2+Q2

1−a2 + 1
2 log(1− a

2) (Q1, Q2) ∈ R3

Now we compute the gradient and Hessian of fβ . In R1,

∂Q1fβ =
a2

2

1

1 + a2Q1 +Q2

∂Q2
fβ =

1

2

1

1 + a2Q1 +Q2
+
β − 1

2

1

1 +Q2

Hfβ =

[
−a4
2

1
(1+a2Q1+Q2)2

−a2
2

1
(1+a2Q1+Q2)2

−a2
2

1
(1+a2Q1+Q2)2

−1
2

1
(1+a2Q1+Q2)2

− β−1
2

1
(1+Q2)2

]
In R2,

∂Q1
fβ =

1

2

(
a2β

1 + a2Q1 +Q2
− a2β

1 + a2Q1
+

1

1 +Q1

)
∂Q2

fβ =
β

2

1

1 + a2Q1 +Q2

Hfβ =

 1
2

(
−a4β

(1+a2Q1+Q2)2
+ a4β

(1+a2Q1)2
− 1

(1+Q1)2

)
−a2β

2
1

(1+a2Q1+Q2)2

−a2β
2

1
(1+a2Q1+Q2)2

−β
2

1
(1+a2Q1+Q2)2


In R3,
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∂Q1fβ =
a2

2

1

1 + a2Q1 +Q2

∂Q2fβ =
1

2

(
1

1 + a2Q1 +Q2
− 1

Q2
+

β

1− a2 +Q2

)

Hfβ =

−a42
1

(1+a2Q1+Q2)2
−a2
2

1
(1+a2Q1+Q2)2

−a2
2

1
(1+a2Q1+Q2)2

1
2

(
−1

(1+a2Q1+Q2)2
+ 1

Q2
2
− β

(1−a2+Q2)2

)
By checking the values fβ and ∇fβ at the boundaries, one can see that fβ is continuously differentiable on R2

>0.

C. Slope at the corner point

We would like to determine the largest βcr such that the supporting hyperplane of the form R1 + βR2 passes through the
corner point. That is,

Cfβ(P1, P2) =
β

2
log(1 +

P2

1 + a2P1
) +

1

2
log(1 + P1)

For β slightly larger than (1−a2+P2)(1+a
2P1)

a2P2(1+P1)
, we have (P1, P2) ∈ R3. The function

β 7→ fβ(P1, P2)−
(
β

2
log(1 +

P2

1 + a2P1
) +

1

2
log(1 + P1)

)
= 0, derivative = 0 and second derivative > 0 at β = (1−a2+P2)(1+a

2P1)
a2P2(1+P1)

. So we have

Cfβ(P1, P2) ≥ fβ(P1, P2)

>
β

2
log(1 +

P2

1 + a2P1
) +

1

2
log(1 + P1)

when β is slightly larger than (1−a2+P2)(1+a
2P1)

a2P2(1+P1)
.

Hence we only need to consider β such that (P!, P2) ∈ R2. (Otherwise the supporting hyperplane of Han-Kobayashi region
of the form R1+βR2 will pass above the corner.) Then the hyperplane R1+βR2 passes through the corner point if and only
if (P1, P2) ∈ R2 and Cfβ(P1, P2) = fβ(P1, P2).

Using the following lemma 3, this is equivalent to that (P1, P2) ∈ R2 and gβ (Q1, Q2) attains global maximum at (P1, P2)
for all β ≤ βcr, where gβ is defined by

gβ (Q1, Q2) := fβ (Q1, Q2)−
1

2

(
a2β

1 + a2P1 + P2
− a2β

1 + a2P1
+

1

1 + P1

)
Q1 −

1

2

(
β

1 + a2P1 + P2

)
Q2

Lemma 3. Let f be a real-valued function differentiable at x. Then Cf(x) = f(x) if and only if f(·) − 〈∇f(x), ·〉 attains
global maximum at x. Here Cf and ∇f denotes the concave envelope and gradient of f , respectively.

Proof. It suffices to show that Cf(x) ≤ f(x) if and only if for all h we have f(x) ≥ f(x+ h)− 〈∇f(x), h〉. The ”if” part is
immediate, by taking concave envelope with respect to h and then putting h = 0.

For the ”only if” part, suppose on the contrary that there is ε > 0 and h 6= 0 such that

f(x) + ε ≤ f(x+ h)− 〈∇f(x), h〉

By differentiability of f at x,
|f(x+ ζ)− f(x)− 〈∇f(x), ζ〉| ≤ ε

2‖h‖
‖ζ‖

for ‖ζ‖ small enough.
Now, for any δ ∈ (0, 1),

f(x) ≥ Cf(x)

≥ δ · Cf(x+ h) + (1− δ) · Cf(x− δ

1− δ
h)

≥ δf(x+ h) + (1− δ)f(x− δ

1− δ
h)

≥ δε+ δf(x) + 〈∇f(x), δh〉+ (1− δ)f(x− δ

1− δ
h)
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Rearranging gives

f(x) ≥ δ

1− δ
ε+ f(x− δ

1− δ
h)−

〈
∇f(x),− δ

1− δ
h

〉
≥ δ

1− δ
ε+ f(x)− ε

2‖h‖

∥∥∥∥− δ

1− δ
h

∥∥∥∥
= f(x) +

ε

2

δ

1− δ
for δ small enough. This gives a contradiction.

We have the following result:

Theorem 7. The maximum β such that the supporting hyperplane of the form R1 + βR2 of the Han-Kobayashi achievable
region of the Gaussian Z-interference channel passes through the corner point (R1, R2) =

(
1
2 log(1 + P1),

1
2 log(1 +

P2

1+a2P1
)
)

is given by

βcr = min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
, β∗
}

where β∗ is the solution to h(β∗) = 0, with

h(β) := β

{
log(1 +

P2

1 + a2P1
)− (1− a2)P2

(1 + a2P1)(1 + a2P1 + P2)

}
+ log

{
1− a2P2(1 + P1)

(1 + a2P1)(1 + a2P1 + P2)
β

}
D. Interior analysis

In this part, we will show that gβ has local maximum in the interior only if gβ(Q1, Q2) ≤ gβ(P1, P2).

Claim 1.

βcr ≤ min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
,

(
1 + a2P1

a2(1 + P1)

)2
}

Proof. βcr ≤ (1−a2+P2)(1+a
2P1)

a2P2(1+P1)
follows from the fact that (P1, P2) ∈ R2.

βcr ≤
(

1+a2P1

a2(1+P1)

)2
follows from one of the second order conditions for (P1, P2) being a local maximum, namely

detHfβ(P1, P2) ≥ 0.

Claim 2. There is no local maximum of gβ in the interior of R1.

Proof. Since gβ is concave in R1, there is at most one local maximum in the interior of R1. The first order condition reads

a2

2

1

1 + a2Q1 +Q2
=

1

2

(
a2β

1 + a2P1 + P2
− a2β

1 + a2P1
+

1

1 + P1

)
1

2

1

1 + a2Q1 +Q2
+
β − 1

2

1

1 +Q2
=

1

2

(
β

1 + a2P1 + P2

)
Solving for Q2 gives

Q2 =
(1 + a2P1)(1 + P1)

1 + P1 +
1− 1

a2

β−1

But in R1 we have β ≥ 1−a2+Q2

a2Q2
. Substituting Q2 gives

β ≥ 1 + a2P1

a4(1 + P1)

after some computation. But we also have β ≤
(

1+a2P1

a2(1+P1)

)2
, implying a2 ≥ 1. This gives a contradiction.

Claim 3. There are at most 2 local maxima of gβ in the interior of R2, both at which value ≤ gβ(P1, P2).

Proof. The first order condition for gβ having a local maximum reads

a2β

1 + a2Q1 +Q2
− a2β

1 + a2Q1
+

1

1 +Q1
=

a2β

1 + a2P1 + P2
− a2β

1 + a2P1
+

1

1 + P1

β

1 + a2Q1 +Q2
=

β

1 + a2P1 + P2
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The solutions are

Q1 = P1 or
1
a2 − 1
β
k − 1

− 1

Q2 = P2 + a2(P1 −Q1)

where k := 1+a2P1

a2(1+P1)
∈ (1, β]. If (Q1, Q2) is one of the solutions, then

gβ(Q1, Q2) = fβ(Q1, Q2)−
β

2

a2Q1 +Q2

1 + a2Q1 +Q2
+
β

2

a2Q1

1 + a2Q1
− 1

2

Q1

1 +Q1

= fβ(Q1, Q2) +
β

2

1

1 + a2Q1 +Q2
− β

2

1

1 + a2Q1
+

1

2

1

1 +Q1
− 1

2

=
β

2
ϕ
(
1 + a2Q1 +Q2

)
− β

2
ϕ
(
1 + a2Q1

)
+

1

2
ϕ (1 +Q1)−

1

2

=
β

2
ϕ
(
1 + a2P1 + P2

)
− β

2
ϕ
(
1 + a2Q1

)
+

1

2
ϕ (1 +Q1)−

1

2

where ϕ (x) := log x+ 1
x . Now let (Q1, Q2) to be the solution other than (P1, P2). Then,

gβ(P1, P2)− gβ(Q1, Q2) =
β

2

(
ϕ
(
1 + a2Q1

)
− ϕ

(
1 + a2P1

))
− 1

2
(ϕ (1 +Q1)− ϕ (1 + P1))

=
β

2

(
ϕ

(
(1− a2) β

β − k

)
− ϕ

(
(1− a2) k

k − 1

))
− 1

2

(
ϕ

(
1− a2

a2
k

β − k

)
− ϕ

(
1− a2

a2
1

k − 1

))
Differentiating with respect to β and simplifying gives

∂β (gβ(P1, P2)− gβ(Q1, Q2)) =
1

2

[
log

(
1 +

k2 − β
k(β − k)

)
− k2 − β
k(β − k)

]
≤ 0

since β ≤
(

1+a2P1

a2(1+P1)

)2
= k2 and ∀x ≥ 0, log(1 + x) ≤ x. So

gβ(P1, P2)− gβ(Q1, Q2) ≥ gβ=k2(P1, P2)− gβ=k2(Q1, Q2) = 0

and hence gβ(P1, P2) ≥ gβ(Q1, Q2).

Claim 4. There is no local maximum of gβ in the interior of R3.

Proof. The first order condition for gβ having a local maximum reads

a2

1 + a2Q1 +Q2
=

a2β

1 + a2P1 + P2
− a2β

1 + a2P1
+

1

1 + P1

1

1 + a2Q1 +Q2
− 1

Q2
+

β

1− a2 +Q2
=

β

1 + a2P1 + P2

by substituting the first equation into the second one, and then writing β = 1−a2+Q2

a2Q2
θ, where θ ∈

(
1+a2Q1

1+Q1
, 1
)

, we get

Q2 = a2(1 + P1)

From the second order condition detHfβ(Q1, Q2) ≥ 0, or equivalently,

β ≥
(
1− a2 +Q2

Q2

)2

=

(
1 + a2P1

a2(1 + P1)

)2

which contradicts with that β <
(

1+a2P1

a2(1+P1)

)2
.
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E. Boundary analysis

The remaining cases are the boundaries Q1 = 0 and Q2 = 0. In this part, we first establish that gβ(P1, P2) ≥ gβ(Q1, Q2)
for (Q1, Q2) on the boundaries if and only if β is smaller than or equal to the upper bound in Claim 1 and β∗ in Theorem 7.
Then in Claim 8 we reduce the minimum of three terms to that of two of them. This gives the critical β in Theorem 7.

Claim 5. On the boundary Q1 = 0 we have that

min
Q2≥0

(gβ(P1, P2)− gβ(0, Q2)) ≥ 0

if and only if β ≤
log(1+P1)+

1
1+P1

−1
log(1+a2P1)+

1
1+a2P1

−1 .

Proof. When Q1 = 0, we have

fβ(Q1, Q2) =
β

2
log(1 +Q2)

gβ(Q1, Q2) =
β

2
log(1 +Q2)−

β

2

1

1 + a2P1 + P2
Q2

gβ(0, Q2) is concave in Q2, maximized at Q2 = a2P1 + P2. Note that (P1, P2) ∈ R2, we compute,

min
Q2≥0

(gβ(P1, P2)− gβ(0, Q2))

= gβ(P1, P2)− gβ(0, a2P1 + P2)

= −β
2

(
log(1 + a2P1) +

1

1 + a2P1
− 1

)
+

1

2

(
log(1 + P1) +

1

1 + P1
− 1

)
≥ 0 if and only if β ≤

log(1+P1)+
1

1+P1
−1

log(1+a2P1)+
1

1+a2P1
−1 .

Claim 6.
log(1 + P1) +

1
1+P1

− 1

log(1 + a2P1) +
1

1+a2P1
− 1
≥
(

1 + a2P1

a2(1 + P1)

)2

and hence, by Claim 1 and Claim5, gβ(P1, P2) ≥ gβ(Q1, Q2) on the boundary Q1 = 0.

Proof. This is equivalent to
a4ϕ (P1)− ϕ

(
a2P1

)
≥ 0

where ϕ (x) = (1 + x)2 log(1 + x)− (1 + x)x. One can compute

ϕ′ (x) = 2(1 + x) log(1 + x)− x
ϕ′′ (x) = 2 log(1 + x) + 1

Then
∂P1

(
a4ϕ (P1)− ϕ

(
a2P1

))
= a4ϕ′ (P1)− a2ϕ′

(
a2P1

)
∂2P1

(
a4ϕ (P1)− ϕ

(
a2P1

))
= a4

(
ϕ′′ (P1)− ϕ′′

(
a2P1

))
= a4 · 2 log 1 + P1

1 + a2P1

≥ 0

So ∂P1

(
a4ϕ (P1)− ϕ

(
a2P1

))
is increasing in P1 and hence ≥ (a4 − a2)ϕ′ (0) = 0. It follows that a4ϕ (P1) − ϕ

(
a2P1

)
is

also increasing in P1 and hence ≥ (a4 − 1)ϕ (0) = 0.

Claim 7. On the boundary Q2 = 0 we have that

min
Q1≥0

(gβ(P1, P2)− gβ(Q1, 0)) ≥ 0

if and only if β ≤ β∗, where β∗ as in Theorem 7.

Proof. When Q2 = 0, we have

fβ(Q1, Q2) =
1

2
log(1 +Q1)

gβ(Q1, Q2) =
1

2
log(1 +Q1)−

1

2

(
a2β

1 + a2P1 + P2
− a2β

1 + a2P1
+

1

1 + P1

)
Q1
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gβ(Q1, 0) is concave in Q1, maximized when

1

1 +Q1
=

a2β

1 + a2P1 + P2
− a2β

1 + a2P1
+

1

1 + P1

∈ [0, 1] since β ≤ (1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)

That is, there is always a maximizing Q1 ≥ 0. Note that (P1, P2) ∈ R2, after some computation,

min
Q1≥0

(gβ(P1, P2)− gβ(Q1, 0))

=
1

2

[
β

{
log(1 +

P2

1 + a2P1
)− (1− a2)P2

(1 + a2P1)(1 + a2P1 + P2)

}
+ log

{
1− a2P2(1 + P1)

(1 + a2P1)(1 + a2P1 + P2)
β

}]
=

1

2
h(β)

which is concave in β, equals 0 when β = 0, the derivative with respect to β is non-negative at β = 0. Here h(·) as in
Theorem 7. So it ≥ 0 if and only if β ≤ β∗.

Claim 8.

min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
, β∗
}

= min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
,

(
1 + a2P1

a2(1 + P1)

)2

, β∗

}
where β∗ as in Theorem 7.

Proof. It suffices to show that, if (1−a2+P2)(1+a
2P1)

a2P2(1+P1)
≥
(

1+a2P1

a2(1+P1)

)2
, or equivalently P2 ≤ a2(1+P1), then

(
1+a2P1

a2(1+P1)

)2
≥ β∗.

That is, h
((

1+a2P1

a2(1+P1)

)2)
≤ 0, where h(·) is defined in Theorem 7.

Write P2 = (1 + a2P1)θ and k := 1+a2P1

a2(1+P1)
. Then θ ≤ 1

k and k ≥ 1. We would like to show h(k2) ≤ 0, that is,

k2 log(1 + θ)− k(k − 1)
θ

θ + 1
+ log(1− kθ

1 + θ
) ≤ 0

⇔ k2
(
log(1 + θ) +

1

1 + θ
− 1

)
+

(
kθ

1 + θ
+ log(1− kθ

1 + θ
)

)
≤ 0

The derivative of left hand side with respect to θ is equal to

k2
θ

(1 + θ)2
+

k

(1 + θ)2
kθ

kθ − (1 + θ)

=
k2θ

(1 + θ)2

(
1 +

1

kθ − (1 + θ)

)
=

k2θ2

(1 + θ)2
1− k

1 + θ − kθ
≤ 0

So k2
(
log(1 + θ) + 1

1+θ − 1
)
+
(
kθ
1+θ + log(1− kθ

1+θ )
)

is decreasing in θ, and = 0 when θ = 0. We are done.
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