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Abstract

We establish an information inequality that is motivated by the capacity region computation for the Gaussian Z-
interference channel. This yields an improved slope for the capacity region at Costa’s corner point. We believe the
inequality may also be of independent interest as it provides a non-trivial upper bound on the entropy of sums of
independent random variables.

1 Introduction

A scalar Gaussian Z-interference channel is modeled as

Y1 = X1 + Z1, (1)
Y2 = X2 + aX1 + Z2 (2)

where X1, X2 correspond to the two transmitted symbols, Z1, Z2 ∼ N (0, 1) are standard Gaussians, and Y1, Y2

correspond to the two received symbols. We impose average power constraints P1, P2 on X1, X2 respectively.
The definition of the achievable rate region and the capacity region is standard in literature and can be found
in Chapter 6 of [1]. The capacity region is known when a ≥ 1 [2], which is also known as the strong interference
regime. Determining the capacity region of the scalar Gaussian Z-interference channel for a < 1 has been an
unresolved central open problem in the area of multi-user information theory.

It is known that capacity region of the Gaussian Z-interference channel has two extreme (corner) points:

• Sato’s corner point [2]:

(R1, R2) =

(
1

2
log(1 + P1),

1

2
log

(
1 +

P2

1 + a2P1

))
,

• Costa’s corner point [3], [4]:

(R1, R2) =

(
1

2
log

(
1 +

a2P1

1 + P2

)
,

1

2
log(1 + P2)

)
.

The latter extreme point, which is also the point of interest in this paper, has had a rich history in this
field. Costa [5] developed the celebrated concavity of entropy power result as an intermediate step towards
establishing the extremality of the latter point. However Sason [6] observed a gap in one of Costa’s results
(Lemma 1 of [3]) in the finishing part of the proof. In [4] the authors replaced the use of Pinsker’s inequality
by Talagrands HWI inequality [7] along with certain continuity arguments to fix the proof of Lemma 1 in [3]
and thus establish the extremality of Costa’s corner point. The argument in [4] also provided an outer bound
to the capacity region of the Gaussian Z-interference channel that had the property that: if R2 ≥ C2 − ε, then
R1 ≤ 1

2 log
(

1 + a2P1

1+P2

)
−O(

√
ε). This non-linear trade-off between R1 and R2 is unavoidable (see Remark 2 [4])

if one follows the proof idea to establish the extremality of the corner point, pioneered by Costa [3]. This implies
that for no finite value of λ will the supporting hyperplane (to the outer bound) of the form R1 + λR2 pass
through Costa’s corner point.

On the other hand, for the Gaussian Z-interference channel, the optimality or sub-optimality of the Han-
Kobayashi’s rate region (with Gaussian signaling) [8] is not yet determined. Further it has been established
in [9] that for every λ ≥ λ0, the supporting hyperplane (to the Han-Kobayashi achievable rate region with
Gaussian signaling) of the form R1 + λR2 passes through Costa’s corner point, where

λ0 = 1 + max

− log a2 − 1−a2
(1+a2P1+P2)

log(1 + P2)− P2

1+P2

,
(1− a2)(1 + P2)

a2P2

 .
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Motivated by this inconsistent behaviour of the outer and inner bounds near the corner point, [10] (specifically
near the corner point) and [11] (for the optimality of the entire capacity region) studied the multi-letter extension
of Han-Kobayashi region (whose limit is the capacity region) for the Gaussian Z-Interference channel. In
particular the following conjecture was made in [11].

Conjecture 1. For µ ≥ 0, N2 ≥ 0 and Σ1, A2 � 0, the maximum

max
p(x1)p(x2)

E[X2X
T
2 ]�A2

[
µh(X2 + X1 + Z1 + Z2) + h(X1 + Z1)− (µ+ 1)h(X1 + Z1 + Z2)− tr(Σ1E[X1X

T
1 ])
]

where Z1 ∼ N (0, I), Z2 ∼ N (0, N2I) and Xi,Zi (i = 1, 2) are random variables in Rk (k ≥ 1), is attained by
Gaussian X1 and X2.

Further it was shown that if this conjecture was true, then Han-Kobayashi achievable region with Gaussian
signaling would equal the capacity region. In this paper, we establish the above conjecture for large enough µ
(see Theorem 1), A2 = P2I, and any choice of Σ1.

In a related development [12] established the extremality of Costa’s corner point by traditional arguments
of deriving outer bounds in information theory. Expanding on that [13] showed that the supporting hyperplane
(to a new outer bound developed in [13]) of the form R1 + λR2 passes through Costa’s corner point, whenever
λ ≥ λ1, where

λ1 = 1 +

 (1+P2)(1−a2)
a2P2

(
1+
√

1+4a2(1−a2)P2

)2

4a2(1−a2)P2
a2 < 1

2

(1+P2)(1−a2)
a2P2

(1+
√

1+P2)
2

P2
a2 ≥ 1

2

.

Thus we have a linear-trade off between R1 and R2 around the corner point, giving rise to a behavior similar
to that predicted by the Han-Kobayashi inner bound. However the outer-bound developed in [13] does not
directly imply Conjecture 1 for any choice of parameters. The result in this paper is inspired and related to the
arguments used in [13] for the interference channel.

2 Main

The main result in this paper is the following:

Theorem 1. Let Xn
1 , Xn

2 , Zn1 , Zn2 be mutually independent random variables in Rn (n ≥ 1) with Zn1 ∼
N (0, N1I) and Zn2 ∼ N (0, N2I), where N1, N2 > 0. Suppose

E[Xn
1 ] = E[Xn

2 ] = 0, E[‖Xn
1 ‖2], E[‖Xn

2 ‖2] <∞.

Then for any

µ ≥ N2

N1

1(
1−

√
N1+N2

E[‖Xn
2 ‖

2]

n +N1+N2

)2 =: µ1

we have
µh(Xn

2 +Xn
1 + Zn1 + Zn2 ) + h(Xn

1 + Zn1 )− (µ+ 1)h(Xn
1 + Zn1 + Zn2 )

≤ n

2

[
µ log

(
E[‖Xn

2 ‖2]

n
+N1 +N2

)
+ logN1 − (µ+ 1) log(N1 +N2)

]
.

Remark 1. The following points are worth noting:

i) The inequality is tight when Xn
2 ∼ N (0, P2I) and Xn

1 = 0. Hence it establishes Conjecture 1 when µ ≥ µ1

and A2 = P2I.

ii) The inequality does not hold for

µ <
N2

N1

1(
1 + N1+N2

E[‖Xn
2 ‖

2]

n

) .
This can be seen by setting Xn

2 ∼ N (0, P2I) and Xn
1 = εI, and taking the derivative of the left-hand-side

of the inequality with respect to ε at ε = 0.
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LetM denote the set of distributions p(xn1 , xn2 , v̂, ŵ) such that

Xn
1 → (V̂ , Ŵ )→ Xn

2 , Ŵ → V̂ → Xn
2 (3)

form Markov chains and Xn
1 ⊥ (V̂ , Xn

2 ). The alphabet sets of V̂ , Ŵ are assumed to be arbitrary. Observe
that by taking V̂ , Ŵ to be constants, any pair of independent Xn

1 , X
n
2 ∈ M. Let µ ≥ 0 and 0 ≤ α ≤ 1. For

independent Xn
1 , X

n
2 we upper bound the terms in Theorem 1 as follows:

µh(Xn
2 +Xn

1 + Zn1 + Zn2 ) + h(Xn
1 + Zn1 )− (µ+ 1)h(Xn

1 + Zn1 + Zn2 )

= µI(Xn
2 ;Xn

2 +Xn
1 + Zn1 + Zn2 ) + h(Xn

1 + Zn1 )− h(Xn
1 + Zn1 + Zn2 |Xn

2 )

(a)
≤ µαI(Xn

2 ;Xn
2 + Zn1 + Zn2 ) + µ(1− α)

(
(h(Xn

2 +Xn
1 + Zn1 + Zn2 )− h(Xn

1 + Zn1 )
)

+ (1 + µ(1− α))
(
h(Xn

1 + Zn1 |Xn
2 )− h(Xn

1 + Zn1 + Zn2 |Xn
2 )
)

≤ sup
p(v̂,ŵ|xn

1 ,x
n
2 )

p(xn
1 ,x

n
2 ,v̂,ŵ)∈M

[
µαI(Xn

2 ;Xn
2 + Zn1 + Zn2 |V̂ ) + µ(1− α)

(
(h(Xn

2 +Xn
1 + Zn1 + Zn2 |Ŵ )− h(Xn

1 + Zn1 |Ŵ )
)

+ (1 + µ(1− α))
(
h(Xn

1 + Zn1 |Xn
2 , Ŵ )− h(Xn

2 +Xn
1 + Zn1 + Zn2 |Xn

2 , Ŵ )
)]

(4)

where (a) follows from data-processing inequality. For any p(x1, x2) define the functional (and its natural
extension to vectors):

Θµ,α(X1, X2) := sup
p(v̂,ŵ|x1,x2)

p(x1,x2,v̂,ŵ)∈M

θµ,α(X1, X2|V̂ , Ŵ ) (5)

where

θµ,α(X1, X2|V̂ , Ŵ ) := µα · I(X2;X2 + Z1 + Z2|V̂ )

+ µ(1− α) ·
[
h(X2 +X1 + Z1 + Z2|Ŵ )− h(X1 + Z1|Ŵ )

]
+ (1 + µ(1− α)) ·

[
h(X1 + Z1|X2, Ŵ )− h(X1 + Z1 + Z2|X2, Ŵ )

]
(6)

We will show that Θµ,α(X1, X2) is sub-additive, i.e.

Θµ,α(Xn
1 , X

n
2 ) ≤

n∑
i=1

Θµ,α(X1i, X2i).

We will use this to show that subject to an upper bound on E[‖Xn
1 ‖2], E[‖Xn

2 ‖2] (even under more relaxed
conditions), the functional Θµ,α(X1, X2) is maximized by Gaussians. Finally, we will optimize within the space
of Gaussian distributions and arrive at a proof of Theorem 1 (see Section 3 for more details).

However, it is easier to establish the Gaussian optimality (Proposition 5) for a perturbed functional Θ
(ε,δ)
µ,α (Xn

1 ,X
n
2 )

and then take the limit of the perturbations (Lemma 2). This is for a technical reason: the perturbed functional
has a strict sub-additivity property that allows one to conclude that Gaussians are the only optimizers, building
on the ideas in [14]. We believe that some of these techniques, the tailoring of the perturbations for instance,
developed here (and in [13]) can be of independent interest.

2.1 Applications of the Inequality
2.1.1 Slope at Costa’s corner point

We now show how Theorem 1 yields a slope to the capacity region at Costa’s corner point. The argument
is essentially same as Lemma 4 in [10], which was one of the starting points of the study of the functional
considered in this paper.

Proposition 1. For any λ ≥ λ2, where

λ2 = 1 +
(1 + P2)(1− a2)

a2P2

(
1 +
√

1 + P2

)2
P2

,

the supporting hyperplane of the form R1 + λR2 to the capacity region of the Gaussian Z-interference channel
(defined by equations (1)-(2)) passes through Costa’s corner point.
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Proof. Costa’s corner point is in the Han-Kobyashi achievable region. Hence it suffices to establish that for any
achievable rate pair we must have

R1 + λR2 ≤
1

2
log

(
1 +

a2P1

1 + P2

)
+
λ

2
log(1 + P2).

Consider an equivalent formulation, [3], of the Z-interference channel

Y1 = X1 + Z1,
Y2 = X2 +X1 + Z1 + Z2

where Z1 ∼ N (0, 1), Z2 ∼ N (0, N2) (where N2 := 1
a2 − 1 and 0 < a < 1) and Xi, Yi, Zi (i = 1, 2) are random

variables in R, under the average power constraints P1 on X1, and 1
a2P2 on X2 where P1, P2 ≥ 0. From Fano’s

inequality, any sequence of codebooks of rate (R1, R2), whose probability of error goes to zero, must satisfy

R1 + λR2 − εn

≤ 1

n

[
I(Xn

1 ;Y n1 ) + λI(Xn
2 ;Y n2 )

]
=

1

n

[
h(Y n2 )− h(Y n1 |Xn

1 ) + (λ− 1)h(Y n2 ) + h(Y n1 )− λh(Y n2 |Xn
2 )
]

=
1

n

[
h(Xn

2 +Xn
1 + Zn1 + Zn2 )− h(Zn1 ) + (λ− 1)h(Xn

2 +Xn
1 + Zn1 + Zn2 ) + h(Xn

1 + Zn1 )− λh(Xn
1 + Zn1 + Zn2 )

]
(a)
≤ 1

2

[
log

(
P2

a2
+ P1 +

1

a2

)
+ (λ− 1) log

(
P2

a2
+

1

a2

)
− λ log

(
1

a2

)]
=

1

2

[
log(1 + a2P1 + P2) + (λ− 1) log(1 + P2)

]
.

Here (a) follows from upper bounding h(Xn
2 + Xn

1 + Zn1 + Zn2 ) with the value of a Gaussian with the same
power, and the latter terms using Theorem 1, where we use λ ≥ λ2.

Remark 2. Since Costa’s corner point is achievable, there is a sequence of (random) codebooks whose value
attains equality in the limit. This implies that inequality marked (a) in the proof above, must be an equality
for the codebooks. To get the equality for the term h(Xn

2 + Xn
1 + Zn1 + Zn2 ), we need Xn

2 ∼ N
(
0, P2

a2 I
)
and

Xn
1 ∼ N (0, P1I). However equality in the latter term occurs when Xn

2 ∼ N
(
0, P2

a2 I
)
and Xn

1 = 0. Together
this implies that distributions of codebooks come arbitrarily close to achieve the equality in Theorem 1 (when the
expressions are normalized by n) asymptotically as n tends to infinity.

Remark 3. This result improves the bound given in [13] for the slope at the corner for the regime a2 < 1
2 .

2.1.2 Upper bound on entropy of sum

Another application of the inequality is to apply it to independent variables.

Proposition 2. Let Xn
1 and Xn

2 be independent variables in Rn satisfying max
{
E[‖Xn

1 ‖2],E[‖Xn
2 ‖2]

}
≤ nP .

Then, for all

µ ≥ N2

N1

√
P +N2 +N1

(
√
P +N1 +N2 −

√
N1 +N2)2

we obtain the following inequality:

µh(Xn
2 +Xn

1 + Zn1 + Zn2 ) ≤ µ+ 1

2

(
h(Xn

1 + Zn1 + Zn2 ) + h(Xn
2 + Zn1 + Zn2 )

)
− 1

2

(
h(Xn

1 + Zn1 ) + h(Xn
2 + Zn1 )

)
+
nµ

2
log

(
1 +

P

N1 +N2

)
− n

2
log

(
1 +

N2

N1

)
.

Proof. The proof immediately follows from two applications of Theorem 1 by interchanging Xn
1 and Xn

2 .

Remark 4. The celebrated EPI yields a lower bound to the entropy of the sum, while the above inequality yields
an upper bound to the entropy of sum of two independent random variables.
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3 Proof Outlines

For i = 1, .., n define
Y1i := X1i + Z1i,
T2i := X2i + Z1i + Z2i,
Y2i := X2i +X1i + Z1i + Z2i = T2i +X1i,

Proof of Theorem 1. For any 0 ≤ α ≤ 1 we have

µh(Y n2 ) + h(Y n1 )− (µ+ 1)h(Y n2 |Xn
2 )

(a)
≤ Θµ,α(Xn

1 , X
n
2 )

≤ G(n)

(
E[‖Xn

1 ‖2]

n
,
E[‖Xn

2 ‖2]

n

)
where (a) follows from (4) and (5), and G(n)(P1, P2) in the last step is defined as in Proposition 3 below. Since
α is arbitrary, we can take infimum over α and we get the desired result by Proposition 3 (iv).

Proposition 3. For P1, P2 ≥ 0 denote

G(n)(P1, P2) := sup
p1(xn

1 )p2(xn
2 ):

E[Xn
1 ]=E[Xn

2 ]=0

E[‖Xn
1 ‖

2]≤nP1,E[‖Xn
2 ‖

2]≤nP2

Θµ,α(Xn
1 , X

n
2 ),

where Θµ,α(Xn
1 , X

n
2 ) is defined in (5). Let

g̃µ,α(A2, B1, B2,Σ) :=
1

2

[
µα ·

[
log(A2 +N1 +N2)− log(N1 +N2)

]
+ µ(1− α) · log(B1 +B2 + 2Σ +A2 +N1 +N2)

+ log(B1 +N1)− (1 + µ(1− α)) · log(B1 +N1 +N2)
]
.

Then we have the following:

(i) G(n)(P1, P2) = n ·G(1)(P1, P2).

(ii) For P1, P2 > 0,

G(n)(P1, P2) ≤ n · sup
B1,B2≥0
B1
P1

+
B2
P2
≤1

g̃µ,α(P2 −
P1B2

P1 −B1
, B1, B2,

√
B1B2)

where 0
0 is understood to be 0.

(iii) If µ ≥ µ0, where

µ0 :=
N2

N1

1

(1−
√

N1+N2

P2+N1+N2
)2

then there exists 0 ≤ α ≤ 1 such that the maximization on right hand side of (ii) is attained by B1 = B2 =
0.

(iv) If µ ≥ µ0 where µ0 is defined as in (iii), then

inf
0≤α≤1

G(n)(P1, P2) ≤ n

2

[
µ log(P2 +N1 +N2) + logN1 − (µ+ 1) log(N1 +N2)

]
.

Proof. The rest of the paper yields an outline and preliminary results that are needed to prove the proposition.
See Appendix F to see how the results mentioned later combine to yield a proof.

3.1 Sub-additive functionals
Let µ ≥ 0 and 0 ≤ α ≤ 1. We shall now establish a sub-additivity result with relatively minimal assumptions
on the random variables so that we can apply it for different settings later on. We also establish it for random
vectors so that we may be able to utilize the results in future attempts to establish Conjecture 1.
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Proposition 4. Let ε ∈ R. Let µ ≥ 0 and 0 ≤ α ≤ 1. Let X2i,T2i,Y1i,Y2i (i = 1, . . . , n) be arbitrary
real-vector-valued random variables and V̂ , Ŵ be any random variables. Define the functional

ϕ(ε)
µ,α(Xn

2 ,T
n
2 ,Y

n
1 ,Y

n
2 |V̂ , Ŵ ) := µα · I(Xn

2 ;Tn
2 |V̂ ) + µ(1− α) ·

[
h(Yn

2 |Ŵ )− h(Yn
1 |Ŵ )

]
+ (1 + µ(1− α)) ·

[
h(Yn

1 |Xn
2 , Ŵ )− h(Yn

2 |Xn
2 , Ŵ )

]
− ε
[
I(Xn

2 ;Tn
2 + Gn|V̂ ) + h(Yn

1 |Ŵ ) + h(Yn
1 |V̂ , Ŵ )

]
(7)

where Gi’s are independent Gaussian random variables of suitable dimension with identity covariance matrix.
Suppose

(X
n\i
2 ,Ti−1

2 )→ (X2i, V̂ )→ T2i,

(X
n\i
2 ,Yn

1(i+1),Y
i−1
2 )→ (Y1i,X2i, Ŵ )→ Y2i

form Markov chains. Then we have

ϕ(ε)
µ,α(Xn

2 ,T
n
2 ,Y

n
1 ,Y

n
2 |V̂ , Ŵ )

=

n∑
i=1

ϕ(ε)
µ,α(X2i,T2i,Y1i,Y2i|Vi,Wi)−

n∑
i=1

[
(1 + µ(1− α))I(Y1i;X

n\i
2 |X2i,Y2i,Wi)

+ εI(Ti−1
2 ;T2i + Gi|Ti−1

2 + Gi−1, V̂ ) + εI(Yi−1
2 ;Y1i|Yn

1(i+1), Ŵ ) + εI(Ti−1
2 ,Yi−1

2 ;Y1i|Yn
1(i+1), V̂ , Ŵ )

]
where Vi := (V̂ ,Ti−1

2 ) and Wi := (Ŵ ,Yn
1(i+1),Y

i−1
2 ). Consequently, from the non-negativity of mutual infor-

mation, we have

ϕ(ε)
µ,α(Xn

2 ,T
n
2 ,Y

n
1 ,Y

n
2 |V̂ , Ŵ ) ≤

n∑
i=1

ϕ(ε)
µ,α(X2i,T2i,Y1i,Y2i|Vi,Wi).

Proof. See Appendix A.

In order to understand the definition of ϕ(ε)
µ,α, one can compare it with the definition of θµ,α in (6). Besides

an extra ε term, ϕ(ε)
µ,α is defined for arbitrary X2i,T2i,Y1i,Y2i (i = 1, . . . , n) while θµ,α assumes an additive

structure on T2i,Y1i,Y2i. This structure is required for the subsequent results and given formally in the next
subsection.

Notation

We shall use the following notations unless otherwise specified. Let X1i, X2i (i = 1, . . . , n) be random vari-
ables in Rd (d ≥ 1) and let V̂ , Ŵ be random variables on arbitrary alphabet sets. The joint distribution of
(Xn

1 ,X
n
2 , V̂ , Ŵ ) is also arbitrary. Let

Y1i := X1i + Z1i,
T2i := X2i + Z1i + Z2i,
Y2i := X2i + X1i + Z1i + Z2i = T2i + X1i.

where
Z1i ∼ N (0, N1I), Z2i ∼ N (0, N2I)

are i.i.d. Gaussian random variables in Rd for i = 1, . . . , n, mutually independent of each other and of
(Xn

1 ,X
n
2 , V̂ , Ŵ ). We assume that N1, N2 > 0. Note that with this definition, ϕ(0)

µ,α as defined in (7) equals
ϕµ,α as defined in (6).

For δ ∈ R let

T̃
(δ)
2i :=

(
0 I
0 δI

)(
X1i

X2i

)
+

(
Z1i

Ẑ1i

)
+

(
Z2i

Ẑ2i

)
, Ỹ

(δ)
2i :=

(
I I
0 δI

)(
X1i

X2i

)
+

(
Z1i

Ẑ1i

)
+

(
Z2i

Ẑ2i

)
where

Ẑ1i ∼ N (0, N̂1I), Ẑ2i ∼ N (0, N̂2I)

are i.i.d. Gaussian random variables in Rd for i = 1, . . . , n, mutually independent of each other and of
(Zn1 ,Z

n
2 ,X

n
1 ,X

n
2 , V̂ , Ŵ ). We assume that N̂1, N̂2 > 0. Observe that T̃

(δ)
2i and Ỹ

(δ)
2i are just perturbed ver-

sions of T2i and Y2i. Define the single-letterization variables

Vi := (V̂ , (T2)i−1
1 ), Wi := (Ŵ , (Y1)ni+1, (Y2)i−1

1 ),
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and for δ ∈ R their perturbed versions

Ṽ
(δ)
i := (V̂ , (T̃

(δ)
2 )i−1

1 ), W̃
(δ)
i := (Ŵ , (Y1)ni+1, (Ỹ

(δ)
2 )i−1

1 ).

Lemma 1. (i) If
(X1)n1 → (V̂ , Ŵ )→ (X2)n1 , Ŵ → V̂ → (X2)n1

form Markov chains, then

X1i → (Ṽ
(δ)
i , W̃

(δ)
i )→ X2i, W̃

(δ)
i → Ṽ

(δ)
i → X2i

form Markov chains.

(ii) If (X1)n1 ⊥ (V̂ , (X2)n1 ) then X1i ⊥ (Ṽ
(δ)
i ,X2i).

Proof. See Appendix B.

With the notation as above, for any ε, δ ∈ R, define the functional

θ(ε,δ)
µ,α (Xn

1 ,X
n
2 |V̂ , Ŵ ) := ϕ(ε)

µ,α((X2)n1 , (T̃
(δ)
2 )n1 , (Y1)n1 , (Ỹ

(δ)
2 )n1 |V̂ , Ŵ )

for any p(xn1 ,xn2 , v̂, ŵ), and the functional

Θ(ε,δ)
µ,α (Xn

1 ,X
n
2 ) := sup

p(v̂,ŵ|xn
1 ,x

n
2 ):

p(xn
1 ,x

n
2 ,v̂,ŵ)∈M

θ(ε,δ)
µ,α (Xn

1 ,X
n
2 |V̂ , Ŵ )

for any p(xn1 ,xn2 ), whereM is as defined (analogously for vector versions) in (3). For δ = 0 the quantities θ(ε,δ)
µ,α

and ϕ(ε)
µ,α differ by only a constant

θ(ε,0)
µ,α (Xn

1 ,X
n
2 |V̂ , Ŵ ) = ϕ(ε)

µ,α(Xn
2 ,T

n
2 ,Y

n
1 ,Y

n
2 |V̂ , Ŵ )− h(Ẑn1 + Ẑn2 ).

Thus θ(ε,δ)
µ,α can be viewed as a perturbation of ϕ(ε)

µ,α via δ, and also as a perturbation of ϕµ,α via both ε and δ.
Note that Proposition 4 together with Lemma 1 immediately establishes the following corollary, i.e. Θ

(ε,δ)
µ,α (X1,X2)

is sub-additive.

Corollary 1. We have the following sub-additivity:

Θ(ε,δ)
µ,α (Xn

1 ,X
n
2 ) ≤

n∑
i=1

Θ(ε,δ)
µ,α (X1i,X2i).

The next proposition establishes that some of the conditional distributions for any optimizer of the perturbed
functional must be Gaussians.

Proposition 5. Let K1i,K2i (i = 1, . . . , n) be sets of d× d matrices. Denote

v
(n)
(K11,K21),...,(K1n,K2n) := sup

p1(xn
1 )p2(xn

2 )
E[Xn

1 ]=E[Xn
2 ]=0

Cov(X1i)∈K1i,Cov(X2i)∈K2i

Θ(ε,δ)
µ,α (Xn

1 ,X
n
2 ).

Then we have the following:

(i) Let ε, δ ∈ R. Then
n∑
i=1

v
(1)
(K1i,K2i)

= v
(n)
(K11,K21),...,(K1n,K2n).

(ii) Let ε > 0 and δ 6= 0, or let ε = δ = 0. Suppose K1,K2 are compact convex sets of d × d matrices.
Then there exists a maximizer p∗(x1,x2, v, w) for v(1)

(K1,K2) such that p∗(x1|w), p∗(x1|v, w) and p∗(x2|v)

are Gaussians with covariance matrices independent of choice of v and w.

Proof. See Appendix C.

The function v(1)
(K1,K2) does not have a simple form and it is difficult to establish its concavity directly. In

the full version we use an indirect rotation and sub-additivity based argument to show its concavity in K1 and
K2.

The next Lemma shows that the perturbed functional converges to the original functional.
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Lemma 2. Let n ≥ 1. Let D be any set of distributions p(xn1 ,xn2 ) such that E[‖Xn
1‖2] and E[‖Xn

2‖2] are
bounded. Then

lim
(ε,δ)→(0,0)

sup
p(xn

1 ,x
n
2 )∈D

Θ(ε,δ)
µ,α (Xn

1 ,X
n
2 ) = sup

p(xn
1 ,x

n
2 )∈D

Θ(0,0)
µ,α (Xn

1 ,X
n
2 ).

Proof. See Appendix D.

The next theorem finally establishes the Gaussian extremality.

Theorem 2. Let K1,K2 be compact convex sets of d×d matrices. Let Θµ,α(X1,X2) be as defined (analogously
for vectors) in (5). Then

sup
p1(x1)p2(x2)

E[X1]=E[X2]=0
Cov(X1)∈K1,Cov(X2)∈K2

Θµ,α(X1,X2) = sup
A2,B1,B2,C1,C2,Σ∈Rd×d

A2,

(
B1 Σ

ΣT B2

)
,

(
C1 −Σ

−ΣT C2

)
�0

B1+C1∈K1, A2+B2+C2∈K2

gµ,α(A2, B1, B2,Σ)

where

gµ,α(A2, B1, B2,Σ)

:=
1

2

[
µα ·

[
log |A2 +N1I +N2I| − log |N1I +N2I|

]
+ µ(1− α) ·

[
log |B1 +B2 + Σ + ΣT +A2 +N1I +N2I| − log |B1 +N1I|

]
+ (1 + µ(1− α)) ·

[
log |B1 − Σ(A2 +B2)−1ΣT +N1I| − log |B1 − Σ(A2 +B2)−1ΣT +N1I +N2I|

]]
.

Proof. See Appendix E .

Remark 5. The result in Theorem 2 is used to establish Proposition 3. Take d = 1 and K1 and K2 to be the set
of non-negative numbers bounded by P1 and P2 respectively. Then, gµ,α(A2, B1, B2,Σ) equals G(1)(P1, P2) as
defined in Proposition 3. The expression g̃µ,α(A2, B1, B2,Σ) used in Proposition 3 is just an easier-to-analyze
upper bound of gµ,α(A2, B1, B2,Σ). Therefore by a more careful analysis, it is possible to get slightly stronger
results than that stated in Proposition 3.

4 Conclusion

In this paper we establish an information inequality by proving Gaussian optimality for an information func-
tional. This establishes, in some regimes, a conjecture that would imply the optimality of Han-Kobayashi region
for the Gaussian Z-interference channel. The inequality provides an improved slope for the capacity region at
the Costa’s corner point for some parameter regimes. It also provides an upper bound on the entropy of sums of
random variables. There are also some perturbation and other techniques which may be of independent interest.
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A Proof of Proposition 4

The proof follows from putting the following calculations together, with (?) denoting application of chain rule
and (]) denoting application of Csiszár’s sum identity.

(i) We have

I(Xn
2 ;Tn

2 |V̂ )
(?)
=

n∑
i=1

I(Xn
2 ;T2i|Ti−1

2 , V̂ )

(a)
=

n∑
i=1

I(X2i;T2i|Ti−1
2 , V̂ )

=

n∑
i=1

I(X2i;T2i|Vi)

where (a) holds since
X
n\i
2 → (X2i,T

i−1
2 , V̂ )→ T2i

forms a Markov chain.

(ii) We have

h(Yn
2 |Ŵ )− h(Yn

1 |Ŵ )

(?)
=

n∑
i=1

[
h(Y2i|Yi−1

2 , Ŵ )− h(Y1i|Yn
1(i+1), Ŵ )

]
(])
=

n∑
i=1

[
h(Y2i|Yi−1

2 , Ŵ )− h(Y1i|Yn
1(i+1), Ŵ ) + I(Yi−1

2 ;Y1i|Yn
1(i+1), Ŵ )− I(Yn

1(i+1);Y2i|Yi−1
2 , Ŵ )

]
(?)
=

n∑
i=1

[
h(Y2i|Yn

1(i+1),Y
i−1
2 , Ŵ )− h(Y1i|Yn

1(i+1),Y
i−1
2 , Ŵ )

]
=

n∑
i=1

[
h(Y2i|Wi)− h(Y1i|Wi)

]
.
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(iii) We have

h(Yn
1 |Xn

2 , Ŵ )− h(Yn
2 |Xn

2 , Ŵ )

(?)
=

n∑
i=1

[
h(Y1i|Xn

2 ,Y
n
1(i+1), Ŵ )− h(Y2i|Xn

2 ,Y
i−1
2 , Ŵ )

]
(])
=

n∑
i=1

[
h(Y1i|Xn

2 ,Y
n
1(i+1), Ŵ )− h(Y2i|Xn

2 ,Y
i−1
2 , Ŵ )

+ I(Yn
1(i+1);Y2i|Xn

2 ,Y
i−1
2 , Ŵ )− I(Yi−1

2 ;Y1i|Xn
2 ,Y

n
1(i+1), Ŵ )

]
(?)
=

n∑
i=1

[
h(Y1i|Xn

2 ,Y
n
1(i+1),Y

i−1
2 , Ŵ )− h(Y2i|Xn

2 ,Y
n
1(i+1),Y

i−1
2 , Ŵ )

]
=

n∑
i=1

[
h(Y1i|Xn

2 ,Wi)− h(Y2i|Xn
2 ,Wi)

]
(?)
=

n∑
i=1

[
h(Y1i|X2i,Wi)− h(Y2i|X2i,Wi) + I(Y2i;X

n\i
2 |X2i,Wi)− I(Y1i;X

n\i
2 |X2i,Wi)

]
(a)
=

n∑
i=1

[
h(Y1i|X2i,Wi)− h(Y2i|X2i,Wi) + I(Y2i;X

n\i
2 |X2i,Wi)− I(Y1i,Y2i;X

n\i
2 |X2i,Wi)

]
(?)
=

n∑
i=1

[
h(Y1i|X2i,Wi)− h(Y2i|X2i,Wi)

]
−

n∑
i=1

I(Y1i;X
n\i
2 |X2i,Y2i,Wi)

where (a) holds since
Y2i → (Y1i,X2i,Wi)→ X

n\i
2

forms a Markov chain.

(iv) Denoting S2i := T2i + Gi we have

I(Xn
2 ;Tn

2 + Gn|V̂ ) = I(Xn
2 ;Sn2 |V̂ )

(?)
=

n∑
i=1

I(Xn
2 ;S2i|Si−1

2 , V̂ )

(a)
=

n∑
i=1

I(X2i;S2i|Si−1
2 , V̂ )

(?)
=

n∑
i=1

[
I(X2i,S

i−1
2 ;S2i|V̂ )− I(Si−1

2 ;S2i|V̂ )
]

(b)
=

n∑
i=1

[
I(X2i,T

i−1
2 ;S2i|V̂ )− I(Si−1

2 ;S2i|V̂ )
]

(?)
=

n∑
i=1

[
I(X2i;S2i|Ti−1

2 , V̂ ) + I(Ti−1
2 ;S2i|V̂ )− I(Si−1

2 ;S2i|V̂ )
]

(c)
=

n∑
i=1

[
I(X2i;S2i|Ti−1

2 , V̂ ) + I(Ti−1
2 ,Si−1

2 ;S2i|V̂ )− I(Si−1
2 ;S2i|V̂ )

]
(?)
=

n∑
i=1

[
I(X2i;S2i|Ti−1

2 , V̂ ) + I(Ti−1
2 ;S2i|Si−1

2 , V̂ )
]

=

n∑
i=1

I(X2i;T2i + Gi|Vi) +

n∑
i=1

I(Ti−1
2 ;T2i + Gi|Ti−1

2 + Gi−1, V̂ )

where (a) holds since
X
n\i
2 → (X2i,S

i−1
2 , V̂ )→ S2i

forms a Markov chain, (b) holds since

(Ti−1
2 ,Si−1

2 )→ (X2i, V̂ )→ S2i
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forms a Markov chain, (c) holds since

Si−1
2 → (Ti−1

2 , V̂ )→ S2i

forms a Markov chain.

(v) We have

h(Yn
1 |Ŵ )

(?)
=

n∑
i=1

h(Y1i|Yn
1(i+1), Ŵ )

(?)
=

n∑
i=1

[
h(Y1i|Yn

1(i+1),Y
i−1
2 , Ŵ ) + I(Yi−1

2 ;Y1i|Yn
1(i+1), Ŵ )

]
=

n∑
i=1

h(Y1i|Wi) +

n∑
i=1

I(Yi−1
2 ;Y1i|Yn

1(i+1), Ŵ ).

(vi) We have

h(Yn
1 |V̂ , Ŵ )

(?)
=

n∑
i=1

h(Y1i|Yn
1(i+1), V̂ , Ŵ )

(?)
=

n∑
i=1

[
h(Y1i|Yn

1(i+1),Y
i−1
2 ,Ti−1

2 , V̂ , Ŵ ) + I(Ti−1
2 ,Yi−1

2 ;Y1i|Yn
1(i+1), V̂ , Ŵ )

]
=

n∑
i=1

h(Y1i|Vi,Wi) +

n∑
i=1

I(Ti−1
2 ,Yi−1

2 ;Y1i|Yn
1(i+1), V̂ , Ŵ ).

B Proof of Lemma 1

(i) The Markov chain
(X1)n1 → (V̂ , Ŵ )→ (X2)n1

implies
(X1i, (Y1)ni+1, (X1)i−1

1 )→ (V̂ , Ŵ )→ (X2i, (T̃
(δ)
2 )i−1

1 )

which in turn implies
X1i → (V̂ , Ŵ , (Y1)ni+1, (X1)i−1

1 , (T̃
(δ)
2 )i−1

1 )→ X2i

which, since Ỹ
(δ)
2i = T̃

(δ)
2i +

(
X1i

0

)
, is the same as

X1i → (V̂ , Ŵ , (Y1)ni+1, (Ỹ
(δ)
2 )i−1

1 , (T̃
(δ)
2 )i−1

1 )→ X2i

or equivalently
X1i → (Ṽ

(δ)
i , W̃

(δ)
i )→ X2i.

Moreover, from both of the Markov chains in the assumption we have a Markov chain

(Ŵ , (X1)n1 )→ V̂ → (X2)n1

which implies
(Ŵ , (Y1)ni+1, (X1)i−1

1 )→ V̂ → (X2i, (T̃
(δ)
2 )i−1

1 )

which in turn implies
(Ŵ , (Y1)ni+1, (X1)i−1

1 )→ (V̂ , (T̃
(δ)
2 )i−1

1 )→ X2i

which, since Ỹ
(δ)
2i = T̃

(δ)
2i +

(
X1i

0

)
, is the same as

(Ŵ , (Y1)ni+1, (Ỹ
(δ)
2 )i−1

1 )→ (V̂ , (T̃
(δ)
2 )i−1

1 )→ X2i

or equivalently
W̃

(δ)
i → Ṽ

(δ)
i → X2i.

(ii) This is obvious from definition.
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C Proof of Proposition 5

We will need three lemmas for proving (ii) of the Proposition.

Lemma 3 (Lemma 1 of [11]). Let Q be a random variable and let X,Y,Z be real-vector-valued random variables
such that for any q the conditional distribution p(x,y, z|q) has everywhere non-zero density. Suppose

X→ (Y, Q)→ Z and Y → (X, Q)→ Z

form Markov chains. Then
(X,Y)→ Q→ Z

forms a Markov chain.

Lemma 4 (Lemma 2 of [11]). Let X1,X2 be real-vector-valued random variables and Z1,Z2 be Gaussian random
variables such that (X1,X2), Z1 and Z2 are independent. Then (X1 + Z1) ⊥ (X2 + Z2) implies X1 ⊥ X2.

Lemma 5 (Lemma 3 of [11]). Let X1,X2 be real-vector-valued random variables such that X1 ⊥ X2 and
(X1 + X2) ⊥ (X1 −X2). Then X1,X2 are Gaussians having the same covariance matrix.

The following lemma illustrates the use of rotation argument and sub-additivity to establish mid-point
concavity of v(1)

(K1,K2).

Lemma 6. Let v(1)
(K1,K2) be as defined in Proposition 5. Assume ε ≥ 0 and δ ∈ R. Then for any 0 ≤ t ≤ 1,

v
(1)
(K11,K21) + v

(1)
(K12,K22) ≤ v

(1)

(Kt
11,Kt

21)
+ v

(1)

(Kt
12,Kt

22)

where
Kt11 := tK11 + (1− t)K12, Kt21 := tK21 + (1− t)K22,

Kt12 := (1− t)K11 + tK12, Kt22 := (1− t)K21 + tK22.

Proof. Suppose (X∗1i,X
∗
2i, V

∗
i ,W

∗
i ) are random variables satisfying the constraints of v(1)

(K1i,K2i)
, and are inde-

pendent among i = 1, 2. Let
(V̂ , Ŵ ) := ((V ∗1 , V

∗
2 ), (W ∗1 ,W

∗
2 ))

and (
X11

X12

)
:=

( √
tI

√
1− tI

−
√

1− tI
√
tI

)(
X∗11

X∗12

)
,

(
X21

X22

)
:=

( √
tI

√
1− tI

−
√

1− tI
√
tI

)(
X∗21

X∗22

)
.

It is immediate that the distribution of ((X11,X12), (X21,X22), V̂ , Ŵ ) is in M, and hence by Lemma 1 the
distribution of (X1i,X2i, Ṽ

(δ)
i , W̃

(δ)
i ) is inM and so satisfies the constraints of v(1)

(Kt
1i,Kt

2i)
. Now,

θ(ε,δ)
µ,α (X∗11,X

∗
21|V ∗1 ,W ∗1 ) + θ(ε,δ)

µ,α (X∗12,X
∗
22|V ∗2 ,W ∗2 )

(a)
= θ(ε,δ)

µ,α ((X∗11,X
∗
12), (X∗21,X

∗
22)|V̂ , Ŵ )

(b)
= θ(ε,δ)

µ,α ((X11,X12), (X21,X22)|V̂ , Ŵ )

(c)
= θ(ε,δ)

µ,α (X11,X21|Ṽ (δ)
1 , W̃

(δ)
1 )︸ ︷︷ ︸

≤v(1)
(Kt

11,Kt
21)

+ θ(ε,δ)
µ,α (X12,X22|Ṽ (δ)

2 , W̃
(δ)
2 )︸ ︷︷ ︸

≤v(1)
(Kt

12,Kt
22)

−
[
(1 + µ(1− α)) · I(Y11;X22|X21, Ỹ

(δ)
21 , W̃

(δ)
1 ) + (1 + µ(1− α)) · I(Y12;X21|X22, Ỹ

(δ)
22 , W̃

(δ)
2 )

+ ε · I(T̃
(δ)
21 ; T̃

(δ)
22 + G2|T̃(δ)

21 + G1, V̂ ) + ε · I(Ỹ
(δ)
21 ;Y12|Ŵ ) + ε · I(T̃

(δ)
21 , Ỹ

(δ)
21 ;Y12|V̂ , Ŵ )

]
≤ v(1)

(Kt
11,Kt

21)
+ v

(1)

(Kt
12,Kt

22)

where (a) follows from the additivity of entropy for independent random variables, (b) follows from rotational
invariance of entropy, and (c) is established by Proposition 4.

Proof of Proposition 5 (i). We shall first show

n∑
i=1

v
(1)
(K1i,K2i)

≤ v(n)
(K11,K21),...,(K1n,K2n).
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Suppose (X∗1i,X
∗
2i, V

∗
i ,W

∗
i ) are random variables satisfying the constraints of v(1)

(K1i,K2i)
, and are independent

among i = 1, · · · , n. Then the random variables defined by

(Xn
1 ,X

n
2 , V̂ , Ŵ ) := ((X∗1)n1 , (X

∗
2)n1 , (V

∗)n1 , (W
∗)n1 )

satisfy the constraints of v(n)
(K11,K21),...,(K1n,K2n), as well as

n∑
i=1

θ(ε,δ)
µ,α (X∗1i,X

∗
2i|V ∗i ,W ∗i )

(a)
= θ(ε,δ)

µ,α (Xn
1 ,X

n
2 |V̂ , Ŵ ) ≤ v(n)

(K11,K21),...,(K1n,K2n)

where (a) follows from the additivity of entropy for independent random variables.
Now we show

n∑
i=1

v
(1)
(K1i,K2i)

≥ v(n)
(K11,K21),...,(K1n,K2n).

Suppose (Xn
1 ,X

n
2 , V̂ , Ŵ ) are random variables satisfying the constraints of v(n)

(K11,K21),...,(K1n,K2n). Then

θ(ε,δ)
µ,α (Xn

1 ,X
n
2 |V̂ , Ŵ )

(a)
≤

n∑
i=1

θ(ε,δ)
µ,α (X1i,X2i|Ṽ (δ)

i , W̃
(δ)
i )

(b)
≤

n∑
i=1

v
(1)
(K1i,K2i)

where (a) follows from Proposition 4, and (b) holds since (X1i,X2i, Ṽ
(δ)
i , W̃

(δ)
i ) satisfies the constraints of

v
(1)
(K1i,K2i)

, as a result of Lemma 1.

Proof of Proposition 5 (ii). The existence of maximizer can be justified by Prokhorov theorem through tech-
niques in Appendix II of [14].

Now consider ε > 0 and δ 6= 0. Take (X∗11,X
∗
21, V

∗
1 ,W

∗
1 ) and (X∗12,X

∗
22, V

∗
2 ,W

∗
2 ) to be two independent

copies of a maximizer p∗(x1,x2, v, w) for v(1)
(K1,K2). With t = 1

2 define ((X11,X12), (X21,X22), V̂ , Ŵ ) as in the

proof of Lemma 6. Note that the distribution of (X1i,X2i, Ṽ
(δ)
i , W̃

(δ)
i ) are candidate maximizers for v(1)

(K1,K2).
Following the steps of Lemma 6 we have

2v
(1)
(K1,K2) = θ(ε,δ)

µ,α (X∗11,X
∗
21|V ∗1 ,W ∗1 ) + θ(ε,δ)

µ,α (X∗12,X
∗
22|V ∗2 ,W ∗2 )

(c)
= θ(ε,δ)

µ,α (X11,X21|Ṽ (δ)
1 , W̃

(δ)
1 )︸ ︷︷ ︸

≤v(1)
(K1,K2)

+ θ(ε,δ)
µ,α (X12,X22|Ṽ (δ)

2 , W̃
(δ)
2 )︸ ︷︷ ︸

≤v(1)
(K1,K2)

−
[
(1 + µ(1− α)) · I(Y11;X22|X21, Ỹ

(δ)
21 , W̃

(δ)
1 ) + (1 + µ(1− α)) · I(Y12;X21|X22, Ỹ

(δ)
22 , W̃

(δ)
2 )

+ ε · I(T̃
(δ)
21 ; T̃

(δ)
22 + G2|T̃(δ)

21 + G1, V̂ ) + ε · I(Ỹ
(δ)
21 ;Y12|Ŵ ) + ε · I(T̃

(δ)
21 , Ỹ

(δ)
21 ;Y12|V̂ , Ŵ )

]
≤ 2v

(1)
(K1,K2).

Non-negativity of mutual information forces the Markov chains:

T̃
(δ)
21 → (T̃

(δ)
21 + G1, V̂ )→ T̃

(δ)
22 + G2, (a)

Ỹ
(δ)
21 → Ŵ → Y12, (b)

(T̃
(δ)
21 , Ỹ

(δ)
21 )→ (V̂ , Ŵ )→ Y12 (c)

where (a) together with the Markov chain

T̃
(δ)
21 + G1 → (T̃

(δ)
21 , V̂ )→ T̃

(δ)
22 + G2

implies by double Markovity (Lemma 3) that

(T̃
(δ)
21 , T̃

(δ)
21 + G1)→ V̂ → T̃

(δ)
22 + G2 (a’)

forms a Markov chain. Applying Lemma 4 to (a’), (b), (c) respectively gives the Markov chains (using the fact
that δ 6= 0)

X21 → V̂ → X22, X11 → Ŵ → X12, X11 → (V̂ , Ŵ )→ X12
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which, by Lemma 5, imply that for any v∗1 , v∗2 , w∗1 , w∗2 each of the pairs of distributions

(X∗21|V ∗1 =v∗1
,X∗22|V ∗2 =v∗2

), (X∗11|W∗1 =w∗1
,X∗12|W∗2 =w∗2

), (X∗11|V ∗1 =v∗1 ,W
∗
1 =w∗1

,X∗12|V ∗2 =v∗2 ,W
∗
2 =w∗2

)

consists of Gaussians with the same covariance matrix. Since v∗1 , v∗2 , w∗1 , w∗2 are arbitrary, we can conclude that
p∗(x1|w), p∗(x1|v, w) and p∗(x2|v) are Gaussians with covariance matrices independent of choice of v and w.

Finally we show the case ε = δ = 0. Let ṽ(1)
(K1,K2) be defined in the same way as v(1)

(K1,K2) but with the
additional constraint that p(xn1 |ŵ), p(xn1 |v̂, ŵ) and p(xn2 |v̂) are Gaussians with covariance matrices independent
of choice of v̂ and ŵ. Then we have ṽ(1)

(K1,K2) = v
(1)
(K1,K2) for ε > 0 and δ 6= 0. One can take the limit (ε, δ)→ (0, 0)

and apply Lemma 2 to get the result.

D Proof of Lemma 2

The proof applies two lemmas. Lemma 7 is a statement of asymptotic bound on entropy by power. Lemma 8
says one can interchange limit and maximization under uniform convergence.

Lemma 7. Let Z be a Gaussian random variable in Rd (d ≥ 1) with an invertible covariance matrix. Then
there exists c ≥ 0 depending only on the covariance matrix of Z such that

0 ≤ h(X + Z|U)− h(Z) ≤ c · E[‖X‖2]

for any random variables (X, U) ⊥ Z where X is in Rd.

Proof. We have
h(X + Z|U)− h(Z) = h(X + Z|U)− h(X + Z|X, U)

= I(X;X + Z|U)

≥ 0.

On the other hand, with
K := Cov(Z)−1/2 Cov(X) Cov(Z)−1/2

we have
h(X + Z|U)− h(Z) ≤ h(X + Z)− h(Z)

(a)
≤ 1

2
log
∣∣2πe(Cov(X) + Cov(Z))

∣∣− 1

2
log
∣∣2πeCov(Z)

∣∣
=

1

2
log |K + I|

=
1

2

d∑
i=1

log
[
1 + λi(K)

]
(b)
≤ d

2
log
[
1 +

d∑
i=1

1

d
λi(K)

]
=
d

2
log
[
1 +

1

d
tr(K)

]
(c)
≤ 1

2
tr(K)

=
1

2
tr(Cov(X) Cov(Z)−1)

(d)
≤ tr(Cov(X))

2λmin(Cov(Z))

≤ E[‖X‖2]

2λmin(Cov(Z))

where (a) holds since Gaussian maximizes entropy, (b) follows from Jensen’s inequality, (c) holds since log(1 +
x) ≤ x for x ≥ 0, (d) follows from von Neumann’s trace inequality, and λi(·) (respectively λmin(·)) denotes the
i-th largest (respectively smallest) eigenvalue functional.

Lemma 8. Let f and fn (n ∈ N) be real-valued functions defined on the same set. Suppose

lim
n→∞

sup
x
|fn(x)− f(x)| = 0.
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Then
lim
n→∞

sup
x
fn(x) = sup

x
f(x).

Proof. Let εn := supx |fn(x) − f(x)|. Note that εn is bounded for sufficiently large n since εn converges. We
have

f(x)− εn ≤ fn(x) ≤ f(x) + εn

for any x and sufficiently large n. Taking supremum over x gives

sup
x
f(x)− εn ≤ sup

x
fn(x) ≤ sup

x
f(x) + εn

and then the result follows by squeezing.

Proof of Lemma 2. Recall that by definition we have

(T̃
(δ)
2 )n1 = (Tn

2 , δX
n
2 + Ẑn1 + Ẑn2 ), (Ỹ

(δ)
2 )n1 = (Yn

2 , δX
n
2 + Ẑn1 + Ẑn2 ).

Plugging into the definition of θ(ε,δ)
µ,α , with Gi, Ĝi’s being independent Gaussian random variables with identity

covariance matrix, we have that for any p(xn1 ,xn2 , v̂, ŵ),∣∣θ(ε,δ)
µ,α (Xn

1 ,X
n
2 |V̂ , Ŵ )− θ(0,0)

µ,α (Xn
1 ,X

n
2 |V̂ , Ŵ )

∣∣
≤ µα ·

∣∣I(Xn
2 ;Tn

2 , δX
n
2 + Ẑn1 + Ẑn2 |V̂ )− I(Xn

2 ;Tn
2 , Ẑ

n
1 + Ẑn2 |V̂ )

∣∣
+ µ(1− α) ·

∣∣h(Yn
2 , δX

n
2 + Ẑn1 + Ẑn2 |Ŵ )− h(Yn

2 , Ẑ
n
1 + Ẑn2 |Ŵ )

∣∣
+ (1 + µ(1− α)) ·

∣∣h(Yn
2 , δX

n
2 + Ẑn1 + Ẑn2 |Xn

2 , Ŵ )− h(Yn
2 , Ẑ

n
1 + Ẑn2 |Xn

2 , Ŵ )
∣∣

+ |ε| ·
∣∣I(Xn

2 ;Tn
2 + Gn, δXn

2 + Ẑn1 + Ẑn2 + Ĝn|V̂ )
∣∣+ |ε| ·

∣∣h(Xn
1 + Zn1 |Ŵ )

∣∣+ |ε| ·
∣∣h(Xn

1 + Zn1 |V̂ , Ŵ )
∣∣

(a)
= µα ·

∣∣[h(δXn
2 + Ẑn1 + Ẑn2 |Tn

2 , V̂ )− h(Ẑn1 + Ẑn2 )
]
−
[
h(δXn

2 + Ẑn1 + Ẑn2 |Xn
2 ,T

n
2 , V̂ )− h(Ẑn1 + Ẑn2 )

]∣∣
+ µ(1− α) ·

∣∣h(δXn
2 + Ẑn1 + Ẑn2 |Yn

2 , Ŵ )− h(Ẑn1 + Ẑn2 )
∣∣

+ (1 + µ(1− α)) ·
∣∣h(δXn

2 + Ẑn1 + Ẑn2 |Yn
2 ,X

n
2 , Ŵ )− h(Ẑn1 + Ẑn2 )

∣∣
+ |ε| ·

∣∣[h(δXn
2 + Ẑn1 + Ẑn2 + Ĝn|Tn

2 + Gn, V̂ )− h(Ẑn1 + Ẑn2 + Ĝn)
]

−
[
h(δXn

2 + Ẑn1 + Ẑn2 + Ĝn|Tn
2 + Gn,Xn

2 , V̂ )− h(Ẑn1 + Ẑn2 + Ĝn)
]

+
[
h(Tn

2 + Gn|V̂ )− h(Zn1 + Zn2 + Gn)
]
−
[
h(Tn

2 + Gn|Xn
2 , V̂ )− h(Zn1 + Zn2 + Gn)

]∣∣
+ |ε| ·

∣∣h(Xn
1 + Zn1 |Ŵ )− h(Zn1 ) + h(Zn1 )

∣∣+ |ε| ·
∣∣h(Xn

1 + Zn1 |V̂ , Ŵ )− h(Zn1 ) + h(Zn1 )
∣∣

(b)
≤ c1δ

2E[‖Xn
2‖2] + |ε|

(
c2δ

2E[‖Xn
2‖2] + c3E[‖Xn

2‖2] + c4E[‖Xn
1‖2] + 2|h(Zn1 )|

)
where (a) follows from chain rule, and (b) follows from Lemma 7, with c1, c2, c3, c4 ≥ 0 being constants that only
depends µ, α and on the distributions of Ẑn1 , Ẑn2 ,Zn1 ,Zn2 . Recall that Gi, Ĝi’s are zero mean Gaussian random
variables with identity covariance matrix.

This shows
sup

p(xn
1 ,x

n
2 ,v̂,ŵ)

p(xn
1 ,x

n
2 )∈D

∣∣(θ(ε,δ)
µ,α − θ(0,0)

µ,α )(Xn
1 ,X

n
2 |V̂ , Ŵ )

∣∣→ 0

as (ε, δ)→ (0, 0). This further implies that

sup
p(xn

1 ,x
n
2 )∈D

∣∣(Θ(ε,δ)
µ,α −Θ(0,0)

µ,α )(Xn
1 ,X

n
2 )
∣∣→ 0

as (ε, δ)→ (0, 0) which, by Lemma 8, implies the result.

E Proof of Theorem 2

Lemma 9. Let A,B,K, K̃ be square matrices such that A � B � 0 and K̃ � K � 0. Then

log |K +B| − log |K +A| ≤ log |K̃ +B| − log |K̃ +A|.
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Proof. One can assume without loss of generality that B = 0, A = I and K � 0. Since K̃ � K we have
K̃−1 + I � K−1 + I and hence

log |K̃−1 + I| ≤ log |K−1 + I|

or equivalently
log |K| − log |K + I| ≤ log |K̃| − log |K̃ + I|.

Alternatively, the inequality is equivalent with I(X;X + Z) ≥ I(X;X + Z + Ẑ) for mutually independent
Gaussian random variables X ∼ N (0, A− B), Z ∼ N (0,K + B), Ẑ ∼ N (0, K̃ −K), and follows from the data
processing inequality for mutual information.

We denote Cov(X|U) := E[XXT |U ] − E[X|U ]E[X|U ]T . Therefore, using the tower property of conditional
expectation we have

E[Cov(X|U)] = E[XXT ]− E[E[X|U ]E[X|U ]T ]

= E[(X− E[X|U ])(X− E[X|U ])T ].

Lemma 10. Let U,X,Z1,Z2 be random variables where X is real-vector-valued, Z1,Z2 are Gaussians and
(U,X), Z1, Z2 are mutually independent. Then

h(X + Z1|U)− h(X + Z1 + Z2|U)

≤ 1

2

[
log
∣∣E[Cov(X|U)] + Cov(Z1)

∣∣− log
∣∣E[Cov(X|U)] + Cov(Z1) + Cov(Z2)

∣∣]
Remark 6. The scalar version of this result is rather well-known. This is Exercise 9.21 in [15], for instance.
It is also possible that the vector case is known but we present a short proof here for completeness.

Proof. We have

h(X + Z1|U)− h(X + Z1 + Z2|U)

≤ h(X− E[X|U ] + Z1|U)− h(X− E[X|U ] + Z1 + Z2|U)

≤ sup
p(v,x̃)

E(X̃X̃T )�E(Cov(X|U))

(V,X̃)⊥(Z1,Z2)

[
h(X̃ + Z1|V )− h(X̃ + Z1 + Z2|V )

]

(a)
= sup

0�K�E(Cov(X|U))

1

2

[
log
∣∣K + Cov(Z1)

∣∣− log
∣∣K + Cov(Z1) + Cov(Z2)

∣∣]
(b)
=

1

2

[
log
∣∣E(Cov(X|U)) + Cov(Z1)

∣∣− log
∣∣E(Cov(X|U)) + Cov(Z1) + Cov(Z2)

∣∣]
where (a) is a consequence of Theorem 1 of [14], and (b) follows from Lemma 9.

Lemma 11. Let U,X be random variables where X is real-vector-valued. Then

h(X|U) ≤ 1

2
log
∣∣2πeE[Cov(X|U)]

∣∣.
Proof. We have

h(X|U)
(a)
≤ E

[1
2

log
∣∣2πeCov(X|U)

∣∣]
(b)
≤ 1

2
log
∣∣2πeE[Cov(X|U)]

∣∣
where (a) holds since Gaussian maximizes entropy and (b) follows from Jensen’s inequality and concavity of
log-determinant.

Lemma 12. Let U,X be random variables where X is real-vector-valued. Then

Cov(X)− E[Cov(X|U)] � 0.

Proof. This follows from the law of total variance.

Proof of Theorem 2. Let us call the left hand side and the right hand side vL and vR respectively.
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We first show vL ≤ vR. By Proposition 5 (ii) vL admits a maximizing distribution (X1,X2, V,W ) such that
p(x1|w), p(x1|v, w) and p(x2|v) are Gaussians with covariance matrices independent of choice of v and w. Let

A2 := Cov(X2|V ),(
B1 Σ
ΣT B2

)
:= E

[
Cov

((
X1

X2

) ∣∣∣∣W)]− (0 0
0 A2

)
,

C1 := Cov(X1)−B1,
C2 := Cov(X2)−B2 −A2.

Note that since the variance of X2 given V = v is independent of choice of v, A2 is a deterministic matrix.
Moreover, we utilized the notation defined earlier that

Cov

((
X1

X2

) ∣∣∣∣W) = E

[(
X1

X2

)(
X1

X2

)T ∣∣∣∣W
]
− E

[(
X1

X2

) ∣∣∣∣W]E [(X1

X2

) ∣∣∣∣W]T
is a function of the random variable W , and (

B1 Σ
ΣT A2 +B2

)
is set to be its expected value.

One can then verify

h(X2 + Z1 + Z2|V )− h(Z1 + Z2) =
1

2

[
log |A2 +N1I +N2I| − log |N1I +N2I|

]
,

h(X2 + X1 + Z1 + Z2|W )− h(X1 + Z1|W )
(a)
≤ 1

2

[
log |B1 +B2 + Σ + ΣT +A2 +N1I +N2I| − log |B1 +N1I|

]
,

and

h(X1 + Z1|X2,W )− h(X1 + Z1 + Z2|X2,W )

(b)
≤ 1

2

[
log |E[Cov(X1|X2,W )] +N1I| − log |E[Cov(X1|X2,W )] +N1I +N2I|

]
(c)
≤ 1

2

[
log |B1 − Σ(A2 +B2)−1ΣT +N1I| − log |B1 − Σ(A2 +B2)−1ΣT +N1I +N2I|

]
,

where (a) follows from Lemma 11 and the assumption that p(x1|w) is Gaussian, (b) follows from Lemma 10, and
(c) follows from Lemma 9 as shown below. Observe that the orthogonality property of conditional expectation
(implying also the vector extension of minimum mean square error property) yields the following:

E[Cov(X1|X2,W )] = E[(X1 − E[X1|X2,W ])(X1 − E[X1|X2,W ])T ]

� E[(X1 − X̃1)(X1 − X̃1)T ]

for any X̃1 that is σ(X2,W ) measurable and E[‖X̃1‖2] <∞. Set

X̃1 := E[X1|W ] + E[(X1 − E[X1|W ])(X2 − E[X2|W ])T ]E[(X2 − E[X2|W ])(X2 − E[X2|W ])T ]−1(X2 − E[X2|W ]).

Now observe that
X1 − X̃1 = X̂1 − E[X̂1X̂

T
2 ]E[X̂2X̂

T
2 ]−1X̂2

where X̂1 := X1 − E[X1|W ] and X̂2 := X2 − E[X2|W ]. Therefore

E[(X1 − X̃1)(X1 − X̃1)T ] = E[X̂1X̂
T
1 ]− E[X̂1X̂

T
2 ]E[X̂2X̂

T
2 ]−1E[X̂2X̂

T
1 ]

= B1 − Σ(A2 +B2)−1ΣT .

Putting these together gives

fµ,α(X1,X2|V,W ) ≤ gµ,α(A2, B1, B2,Σ).

Now we verify A2, B1, B2, C1, C2,Σ satisfy the constraints of vR. We have

E
[
Cov

((
X1

X2

) ∣∣∣∣W)] (a)
� E

[
Cov

((
X1

X2

) ∣∣∣∣V,W)] (b)
=

(
Cov(X1|V,W ) 0

0 Cov(X2|V )

)
�
(

0 0
0 A2

)
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where (a) follows from Lemma 12 and (b) holds since

X1 → (V,W )→ X2, W → V → X2

form Markov chains. This gives (
B1 Σ
ΣT B2

)
� 0.

We also have (
C1 −Σ
−ΣT C2

)
=

(
Cov(X1) 0

0 Cov(X2)

)
− E

[
Cov

((
X1

X2

) ∣∣∣∣W)]
(a)
= Cov

((
X1

X2

))
− E

[
Cov

((
X1

X2

) ∣∣∣∣W)] (b)
� 0

where (a) holds since X1 ⊥ X2 and (b) follows from Lemma 12. The remaining constraints, namely,

A2 � 0, B1 + C1 ∈ K1, A2 +B2 + C2 ∈ K2,

are obvious.
Next we show vL ≥ vR. Suppose A2, B1, B2, C1, C2,Σ are matrices that satisfy the constraints of vR. Let

A2

B1

B2

C1

C2

 ∼ N
0,


A2

B1 Σ
ΣT B2

C1 −Σ
−ΣT C2




and let
X1 := B1 + C1, X2 := A2 + B2 + C2, V := B2 + C2, W := (C1,C2).

Then one can readily verify
fµ,α(X1,X2|V,W ) = gµ,α(A2, B1, B2,Σ)

and that (X1,X2, V,W ) satisfies the constraints of vL.

F Proof of Proposition 3

We will need Lemma 13 to justify the continuity of G(1).

Lemma 13. Let (X, d) be a metric space. Suppose f : X → R is Lipschitz, i.e. there exists a constant C ∈ R
such that

|f(x)− f(y)| ≤ C · d(x, y)

for any x, y ∈ X. Suppose S and Sn (n ∈ N) are subsets of X such that Sn converges to S in Hausdorff distance,
i.e.

lim
n

max

{
sup
x∈Sn

inf
y∈S

d(x, y), sup
x∈S

inf
y∈Sn

d(x, y)

}
= 0.

Then
lim
n

sup
x∈Sn

f(x) = sup
x∈S

f(x).

Proof. For any x ∈ Sn and y ∈ S it holds that

f(x) ≤ f(y) + C · d(x, y)

and hence
sup
x∈Sn

f(x) ≤ sup
y∈S

f(y) + C · sup
x∈Sn

inf
y∈S

d(x, y).

Taking limit yields
lim sup

n
sup
x∈Sn

f(x) ≤ sup
x∈S

f(x).

Similarly for any x ∈ S and y ∈ Sn it holds that

f(x) ≤ f(y) + C · d(x, y)
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and hence
sup
x∈S

f(x) ≤ sup
y∈Sn

f(y) + C · sup
x∈S

inf
y∈Sn

d(x, y).

Taking limit yields
sup
x∈S

f(x) ≤ lim inf
n

sup
x∈Sn

f(x).

Proof of Proposition 3 (i). Proposition 5 (i) (with K1i := {K1 : tr(K1) ≤ P1} and K2i := {K2 : tr(K2) ≤ P2})
implies that

G(n)(P1, P2) ≥ n ·G(1)(P1, P2)

as well as (with K1i := {K1 : tr(K1) ≤ Q1i} and K2i := {K2 : tr(K2) ≤ Q2i}) that

G(n)(P1, P2) ≤ sup
Q1i,Q2i≥0∑n
i=1Q1i≤nP1∑n
i=1Q2i≤nP2

n∑
i=1

G(1)(Q1i, Q2i).

It then suffices to show that (P1, P2) 7→ G(1)(P1, P2) is concave. Indeed Lemma 6 (with Kji := {K : tr(K) ≤ Pji}
and t := 1

2 ) implies

G(1)(P11, P21) +G(1)(P12, P22) ≤ 2 ·G(1)(
P11 + P12

2
,
P21 + P22

2
)

for any P1i, P2i ≥ 0 (i = 1, 2), i.e. G(1) is midpoint-concave. This together with the fact that G(1) is continuous,
which can be shown by Lemma 13 by considering the matrix expression in Theorem 2, implies that G(1) is
concave.

Proof of Proposition 3 (ii). In view of (i) it suffices to show the scalar case, i.e. n = 1. Applying Lemma 9 one
can get

gµ,α(A2, B1, B2,Σ) ≤ g̃µ,α(A2, B1, B2,Σ)

for scalars, where gµ,α is defined as in Theorem 2. This gives an upper bound for the matrix expression in
Theorem 2:

G(1)(P1, P2) ≤ sup
A2,B1,B2,C1,C2≥0,Σ∈R

Σ2≤B1B2

Σ2≤C1C2
B1+C1≤P1

A2+B2+C2≤P2

g̃µ,α(A2, B1, B2,Σ).

Now we simplify this maximization. The variables C1, C2 can be eliminated:

sup
A2,B1,B2≥0,Σ∈R

Σ2≤B1B2

Σ2≤(P1−B1)(P2−A2−B2)
B1≤P1

A2+B2≤P2

g̃µ,α(A2, B1, B2,Σ).

Since the objective is increasing in Σ, we can put its maximum value:

sup
A2,B1,B2≥0
B1≤P1

A2+B2≤P2

g̃µ,α(A2, B1, B2,
√

min{B1B2, (P1 −B1)(P2 −A2 −B2)}).

We can further assume B1B2 ≤ (P1−B1)(P2−A2−B2) (otherwise we could increase the objective by increasing
A2 while fixing A2 +B2):

sup
A2,B1,B2≥0
B1≤P1

A2+B2≤P2

B1B2≤(P1−B1)(P2−A2−B2)

g̃µ,α(A2, B1, B2,
√
B1B2).

We can further assume B1B2 = (P1 − B1)(P2 − A2 − B2) (otherwise we would also have A2 + B2 < P2 and
we could increase the objective by increasing A2 or B2 since the objective is increasing in both A2 and B2). If
B1 6= P1 then it means

A2 = P2 −
P1B2

P1 −B1
. (8)
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If B1 = P1 then it implies B1B2 = 0 and a maximizer is given by A2 = P2 and B2 = 0. In both cases, (8) is
satisfied. From equation (8) the constraint A2 + B2 ≤ P2 is automatically satisfied and the constraint A2 ≥ 0
is equivalent to B1

P1
+ B2

P2
≤ 1. So we have:

sup
B1,B2≥0
B1
P1

+
B2
P2
≤1

g̃µ,α(P2 −
P1B2

P1 −B1
, B1, B2,

√
B1B2)

where 0
0 is understood to be 0.

Proof of Proposition 3 (iii). The maximization is attained by B1 = B2 = 0 if and only if for any B1, B2

satisfying the constraints we have

1

2

[
µα ·

[
log(P2 −

P1B2

P1 −B1
+N1 +N2)− log(N1 +N2)

]
+ µ(1− α) · log(B1 +B2 + 2

√
B1B2 + P2 −

P1B2

P1 −B1
+N1 +N2)

+ log(B1 +N1)− (1 + µ(1− α)) · log(B1 +N1 +N2)
]

≤ 1

2

[
µα ·

[
log(P2 +N1 +N2)− log(N1 +N2)

]
+ µ(1− α) · log(P2 +N1 +N2) + log(N1)− (1 + µ(1− α)) · log(N1 +N2)

]
or equivalently

µα · log(1− P1B2

P1 −B1

1

P2 +N1 +N2
)

+ µ(1− α) · log(1 +

B1+2
√
B1B2− B1B2

P1−B1

P2+N1+N2
(N1 +N2)−B1

B1 +N1 +N2
) + log(1 +

B1N2

(B1 +N1 +N2)N1
) ≤ 0.

By dividing the above inequality by µ+ 1 and utilizing concavity of x 7→ log(1 + x), this is implied by

−µα · P1B2

P1 −B1

1

P2 +N1 +N2
+ µ(1− α) ·

B1+2
√
B1B2− B1B2

P1−B1

P2+N1+N2
(N1 +N2)−B1

B1 +N1 +N2
+

B1N2

(B1 +N1 +N2)N1
≤ 0

or equivalently

−µα P1(B1 +N1 +N2)

(P1 −B1)(N1 +N2)
B2 + µ(1− α)

[
2
√
B1

√
B2 −

B1

P1 −B1
B2 −

B1P2

N1 +N2

]
+
B1N2(P2 +N1 +N2)

N1(N1 +N2)
≤ 0.

Since the left hand side is quadratic in
√
B2 with negative leading coefficient, this is implied by

µ2(1− α)2B1 +

[
µα

P1(B1 +N1 +N2)

(P1 −B1)(N1 +N2)
+ µ(1− α)

B1

P1 −B1

] [
B1N2(P2 +N1 +N2)

N1(N1 +N2)
− µ(1− α)

B1P2

N1 +N2

]
≤ 0

or equivalently

µ(1− α)2(P1 −B1) +

[
α(P1 +

P1

N1 +N2
B1) + (1− α)B1

] [
N2

N1
(1 +

P2

N1 +N2
)− µ(1− α)

P2

N1 +N2

]
≤ 0.

Since left hand side is linear in B1, this is true for all B1 ≥ 0 if the linear coefficient and the constant term are
≤ 0, that is

−µ(1− α)2 +

[
α

P1

N1 +N2
+ (1− α)

] [
N2

N1
(1 +

P2

N1 +N2
)− µ(1− α)

P2

N1 +N2

]
≤ 0, (9)

µ(1− α)2P1 + αP1

[
N2

N1
(1 +

P2

N1 +N2
)− µ(1− α)

P2

N1 +N2

]
≤ 0. (10)

Inequality (10) implies
N2

N1
(1 +

P2

N1 +N2
)− µ(1− α)

P2

N1 +N2
≤ 0.
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which implies (9). Thus, it suffices to satisfy (10) since it implies (9). This is equivalent to

N2

N1
(1 +

P2

N1 +N2
) ≤ µ ·

[
(1− α)

P2

N1 +N2
− (1− α)2

α

]
.

It can be shown that the right hand side is ≥ 0 if and only if α ≥ N1+N2

P2+N1+N2
, and is maximized by α =√

N1+N2

P2+N1+N2
. Putting this maximizing α and rearranging we get

µ ≥ N2

N1

1(
1−

√
N1+N2

P2+N1+N2

)2 = µ0.

To conclude, if µ ≥ µ0 then letting α =
√

N1+N2

P2+N1+N2
gives that the maximization on the right hand side of (ii)

is attained by B1 = B2 = 0.

Proof of Proposition 3 (iv). This is immediate from (ii) and (iii).
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