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Abstract—In this paper we show that colored Gaussian inputs
to any k-letter extension of the standard scalar Gaussian interfer-
ence channel do not improve the 1-letter region with Gaussian
signaling. Further, we conjecture an inequality, which if true,
would establish the capacity of the scalar Gaussian Z-interference
channel.

Index Terms—Interference channel, Multi-letter Gaussians

I. INTRODUCTION

Determining a computable characterization of the capacity
region of a scalar Gaussian interference channel is a central
open question in network information theory. In particular,
it is not known whether the Han–Kobayashi region [1] with
Gaussian auxiliaries (and power control) yields the capacity
region or not. Recently, it was shown [2] that the multi-
letter extension of the Han–Kobayashi region for some discrete
memoryless interference channels strictly improves on the
single-letter region, thus demonstrating the sub-optimality of
the Han–Kobayashi scheme.

Motivated by this result, it is natural to ask the same
question for the Gaussian interference channel: do the multi-
letter extensions of the Han–Kobayashi region with Gaussian
auxiliaries (and power control) improve on the single-letter
region. In this paper, we answer this question in the negative.
In the second part we conjecture an optimality result that
would imply that the Han–Kobayashi achievable region would
match the capacity region for the Gaussian Z-interference
channel.

A. Preliminaries

A scalar Gaussian interference channel is defined by

Y1 = X1 + bX2 + Z1

Y2 = X2 + aX1 + Z2

where Z1, Z2 ∼ N (0, 1) are independent unit-power Gaus-
sians. We assume power constraints P1 and P2 for the inputs
X1 and X2, respectively. This channel setting has been actively
studied in the literature since mid 70s, so a complete literature
survey is beyond the scope of this paper. In the next paragraph
we summarize some known results.

The capacity region has been established for the case
a, b ≥ 1 [3]. The capacity region has two pareto-optimal
points, also called “corner” points, of the form: (C1, R

∗
2) and

(R∗1, C2) where C1 = 1
2 log(1 + P1) and C2 = 1

2 log(1 + P2)
denote the interference-free point-to-point capacities to the two
receivers. The above corner points have been determined, see

[3]–[5], for all ranges of parameters. Additionally, the Pareto-
optimal point that maximizes the rate sum R1+R2 under the
condition: a(1+b2P2)+b(1+a

2P1) ≤ 1 has been established
independently in [6]–[8]. The result in [9] establishes that the
Hausdorff distance (under L1-norm) between true capacity
region and the Han–Kobayashi region is at most 1, for all
ranges of parameters.

There have been as yet unsuccessful attempts to improve
on the Han–Kobayashi rate region using ideas such as pertur-
bations using Hermite polynomials [10], as well as correlated
coding schemes [11].

There has been some instances in network information
theory, including work by the authors, where multi-letter
Gaussian schemes have been shown to match the single-letter
scheme, such as [12]–[14]. This work is a natural extension of
such results; however the optimization problem that occurs in
this instance has non-trivial local maximizers and yet one can
obtain the global maximizers using some structural results.

It is rather immediate to see that the Han–Kobayashi inner
bound (Theorem 6.4 in [15]) for the k-letter extension, when
evaluated with Gaussian random variables, reduces to the set
of rate pairs (R1, R2) that satisfy
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for Kq
U1
,Kq

V1
,Kq

U2
,Kq

V2
∈ Rk×k being symmetric positive

semi-definite matrices satisfying EQ
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≤ kP2, and some “time-

sharing” variable Q. By a standard application of cardinality-
bounding techniques, it suffices to consider |Q| ≤ 9 (not
needed in this note). Let RGSk denote the above region.

The main result of this note is the following:

Theorem 1. RGSk = RGS1 for all k ≥ 1.

We will prove this theorem in the next section.

II. MAIN

For a k × k Hermitian matrix A, let λ1(A) ≤ · · · ≤ λk(A)
denote its eigenvalues. The proof uses a couple of standard
technical results that we state at the outset.

Theorem 2 (Fiedler [16]). Let A,B be k × k Hermitian
matrices. Suppose λk(A) + λk(B) ≥ 0. Then

k∏
i=1

(λi(A) + λi(B)) ≤ |A+B| ≤
k∏
i=1

(λi(A) + λk+1−i(B))

Theorem 3 (Courant-Fischer min-max theorem). Let A be a
k × k Hermitian matrix. Then we have

λi(A) = inf
V⊆Rk

dimV=i

sup
x∈V
‖x‖=1

xTAx = sup
V⊆Rk

dimV=n−i+1

inf
x∈V
‖x‖=1

xTAx,

where V denotes subspaces of the indicated dimension.

Corollary 1. Let A,B be k×k Hermitian matrices with B �
0. Then λi(A+B) ≥ λi(A) for i = 1, · · · , k.

Proof. Theorem 3 and B � 0 implies that
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Given any collection of symmetric positive semi-definite
matrices Kq
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,
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where diag({ai}) indicates a diagonal matrix with diagonal
entries a1, .., ak. The positive semi-definiteness of K̂U1 , K̂U2

follows from Corollary 1. Note that these are trace preserving
operations, i.e. tr(K̂q
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Lemma 1. For any c1, c2 ≥ 0, let (A1, Â1) =
(Kq
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Proof.

|I + c1A1 + c2A2| ≤
k∏
i=1

(1 + c1λi(A1) + c2λn+1−i(A2))

=
∣∣∣I + c1Â1 + c2Â2

∣∣∣
where the inequality follows from Theorem 2.

Proof of Theorem 1: From (2) and Lemma 1, observe that
replacing (Kq

U1
,Kq

V1
,Kq

U2
,Kq

V2
) by (K̂q

U1
, K̂q

V1
, K̂q

U2
, K̂q

V2
)

cannot decrease any of the right-hand-sides of (1). This shows
that RGSk can be attained by diagonal covariance matrices.
Now the inclusion RGSk ⊆ RGS1 is immediate, thus establish-
ing Theorem 1.

III. GAUSSIAN Z-INTERFERENCE CHANNEL

A scalar Gaussian Z-interference channel is defined by

Y1 = X1 + Z1

Y2 = X2 + aX1 + Z2

where Z1, Z2 ∼ N (0, 1) are independent unit-power Gaus-
sians. We assume power constraints P1 and P2 for the inputs



X1 and X2, respectively. Motivated by the results in the pre-
vious section, we study the optimality of the Han–Kobayashi
achievable region.

For this channel [3], [4] determined that R1 + R2 is max-
imized at the “corner-point” (C1, R

∗
2) where C1 = 1

2 log(1 +

P1) and R∗2 = 1
2 log

(
1 + P2

1+a2P1

)
. Therefore it suffices to

maximize λR2+R1 for λ ≥ 1, to compute the capacity region.
For λ ≥ 1 the weighted sum-rate of the k-letter extension

of the Han–Kobayashi region for the Z-interference channel
is given by

λR2 +R1

= max
p(q)p1(u1,x1|q)p2(x2|q)

I(U1,X2;Y2|Q)

+ I(X1;Y1|U1, Q) + (λ− 1)I(X2;Y2|U1, Q).

Define the function

f(Q1, Q2)

:= max
p1(u1,x1)p2(x2)

I(U1,X2;Y2)

+ I(X1;Y1|U1) + (λ− 1)I(X2;Y2|U1).

where the maximum is over independent X1 and X2 with
power kQ1 and kQ2. It is immediate that

f(Q1, Q2) = max
p1(x1)p2(x2)

I(X1,X2;Y2) + CX1 [I(X1;Y1)

+(λ− 1)I(X2;Y2)− I(X1;Y2|X2)]

= max
p1(x1)p2(x2)

I(X1,X2;Y2)

+ CX1 [(λ− 1)h(X2 + aX1 + Z) + h(X1 + Z)

−λh(aX1 + Z)]

where, as before, the maximum is over independent X1 and
X2 with power kQ1 and kQ2, and CX1

denotes the concave
envelope taken over the distributions of X1.

Then the Han–Kobayashi region with power constraints
P1, P2 is given by the concave envelope of the function
f(Q1, Q2) evaluated at the pair (P1, P2).

Therefore the key is to compute the function f(Q1, Q2).
We are going to upper bound f(Q1, Q2) as follows:

f(Q1, Q2) ≤
k

2
log(1 +Q2 + a2Q1)

+ max
p1(x1)p2(x2)

CX1
[(λ− 1)h(X2 + aX1 + Z)

+ h(X1 + Z)− λh(aX1 + Z)]

=
k

2
log(1 +Q2 + a2Q1)

+ CQ1

[
max

p1(x1)p2(x2)
(λ− 1)h(X2 + aX1 + Z)

+ h(X1 + Z)− λh(aX1 + Z)] .

Remark 1. We note the following
• The maximization inside the concave envelope needs to

be clarified. Define the function

g(Q̂1, Q2) := max
p1(x1)p2(x2)

(λ− 1)h(X2 + aX1 + Z)

+ h(X1 + Z)− λh(aX1 + Z)

where the maximum is over independent X1 and X2 with
power kQ̂1 and kQ2. Then we are computing the concave
envelope of g(Q̂1, Q2) with respect to the first coordinate
Q̂1 at the point Q1.

• If the maximizers are Gaussians, then the upper bound is
achievable.

For α ≥ 0, let us define the “Fenchel-dual” function

ĝ(α,Q2) = max
p1(x1)p2(x2)

(λ− 1)h(X2 + aX1 + Z)

+ h(X1 + Z)− λh(aX1 + Z)

− αE(‖X1‖2)

Now there is no power constraint on X1. We still require
E(X2

2) ≤ Q2.
Note that the dual of the dual yields the concave envelope,

i.e. the concave envelope of g(Q̂1, Q2) at Q1 is given by

min
α≥0
{ĝ(α,Q2) + αQ1} .

Observation: In summary, if Gaussians yield ĝ(α,Q2) we
are done. Taking Lagrange multiplier β for the power con-
straint on X2 we arrive at the sufficiency of Conjecture 1
below.

A. A conjecture

Let α, β ≥ 0 be constants.

Conjecture 1. The maximum of

(λ− 1)h(X2 + aX1 + Z) + h(X1 + Z)− λh(aX1 + Z)

− αE(‖X1‖2)− β E(‖X2‖2)

over independent variables X1 and X2 taking values in Rk
is attained by Gaussians X1 ∼ N (0, aI),X2 ∼ N (0, bI).

Remark 2. The following is worth noting: from the preliminary
development in this section, if the conjecture is true then
Han–Kobayashi scheme with gaussian signaling achieves the
capacity region of the Gaussian Z-interference channel.

Proposition 1. Conjecture 1 holds if β ≥ λ−1
2 or α ≥ 1−a2

2 .

Proof. The proofs are rather immediate as seen below.
Case 1: β ≥ λ−1

2 .
Note that

(λ− 1)h(X2 + aX1 + Z) + h(X1 + Z)− λh(aX1 + Z)

− αE(‖X1‖2)− β E(‖X2‖2)
= (λ− 1)

(
h(X2 + aX1 + Z)− h(aX1 + Z)

)
+ h(X1 + Z)− h(aX1 + Z)

− αE(‖X1‖2)− β E(‖X2‖2)
(a)

≤ (λ− 1)
(
h(X2 + Z)− h(Z)

)
+ h(X1 + Z)− h(aX1 + Z)

− αE(‖X1‖2)− β E(‖X2‖2)
≤ h(X1 + Z)− h(aX1 + Z)− αE(‖X1‖2),

where (a) follows by data-processing. The last inequality
follows as (λ − 1)

(
h(X2 + Z) − h(Z)

)
− β E(‖X2‖2) is



maximized when E(‖X2‖2) = 0. (For a fixed E(‖X2‖2), the
first part is maximized by Gaussian X2 and now differentiate
and note that the maximizing power is 0.)

The final inequality is maximized by Gaussians for any fixed
E(‖X1‖2) as an immediate consequence of entropy-power-
inequality (EPI).
Case 2: α ≥ 1−a2

2 . Similar to the previous case note that

(λ− 1)h(X2 + aX1 + Z) + h(X1 + Z)− λh(aX1 + Z)

− αE(‖X1‖2)− β E(‖X2‖2)
= (λ− 1)

(
h(X2 + aX1 + Z)− h(aX1 + Z)

)
+ h(X1 + Z)− h(aX1 + Z)

− αE(‖X1‖2)− β E(‖X2‖2)
≤ (λ− 1)

(
h(X2 + Z)− h(Z)

)
− β E(‖X2‖2).

As before h(X1+Z)−h(aX1+Z) is maximized by Gaussians
for any fixed E(‖X1‖2) and further if α ≥ 1−a2

2 , then
E(‖X1‖2) = 0 is the maximizer. Clearly the final inequality
is maximized by a Gaussian X2. The fact that the covariances
can be assumed to be multiples of identity matrix is a simple
exercise in both cases.

A natural way to prove the above conjecture is to adopt a
variational approach along traditional lines and move to the
Gaussian maximizers along the ”Stam-path”. Numerical sim-
ulations indicate that this technique holds promise. Therefore,
we present the numerical observation as a conjecture below.

Conjecture 2. Let X1, X2 be independent random variables.
Suppose Q∗1, Q

∗
2 maximizes

λ− 1

2
log(1 + a2Q1 +Q2) +

1

2
log(1 +Q1)

− λ

2
log(1 + a2Q1)− αQ1 − βQ2.

For t ∈ [0, 1] define

f(t) := (λ− 1)h(X2t + aX1t + Z) + h(X1t + Z)

− λh(aX1t + Z)− αE(X2
1t)− β E(X2

2t)

where
X1t :=

√
1− tX1 +

√
tN (0, Q∗1)

X2t :=
√
1− tX2 +

√
tN (0, Q∗2).

Then f(t) is increasing and concave.

A simple calculation yields that

f ′(t) =
1

2(1− t)
(λ− 1)(Q∗2 + a2Q∗1 + 1)I(X2t + aX1t + Z)

+
1

2(1− t)
(Q∗1 + 1)I(X1t + Z)

− 1

2(1− t)
λ(a2Q∗1 + 1)I(aX1t + Z)

− α(Q∗1 − E
(
X2

1

)
)− β(Q∗2 − E

(
X2

2

)
),

where

I(X) :=
d

dt
h(X +

√
2sN (0, 1))

∣∣∣∣
s↓0+

,

denotes the Fisher information.
Conjecture 2 stipulates that f ′(t) ≥ 0. Note that it suffices

to show f ′(0) ≥ 0 for any independent X1, X2. Reason: if
we map (X1, X2) ← (X1t, X2t), the value f ′(0) becomes
(1− t)f ′(t).

Hence the first part of Conjecture 2, i.e. that f(t) is
increasing, is equivalent to the following conjecture.

Conjecture 3. Let X1, X2 be independent random variables.
Suppose Q∗1, Q

∗
2 maximizes

λ− 1

2
log(1 + a2Q1 +Q2) +

1

2
log(1 +Q1)

− λ

2
log(1 + a2Q1)− αQ1 − βQ2

Then

(λ− 1)(Q∗2 + a2Q∗1 + 1)I(X2 + aX1 + Z)

+ (Q∗1 + 1)I(X1 + Z)− λ(a2Q∗1 + 1)I(aX1 + Z)

− 2α(Q∗1 − E
(
X2

1

)
)− 2β(Q∗2 − E

(
X2

2

)
)

≥ 0

Remark 3. From existing bounds on Fisher information the
above conjecture can be easily established for X1, X2 satisfy-
ing some power (second-moment) constraints on X1, X2.

B. On the doubling trick

Another potential method for establishing Conjecture 1 is
to use the so-called “doubling trick” employed in [17]. This
may indeed work in this scenario, but it must be noted that
the results in [2] imply that there are discrete memoryless Z-
interference channels for which the function

CX1
[(λ− 1)H(Y2) +H(Y1)− λH(Y2|X2)]

does not satisfy sub-additivity or equivalently the “doubling
property”. Hence one has to first establish sub-additivity for
a sub-class containing the Gaussian Z-interference channels
to use this trick. This necessitates making use of the channel
structure rather than generic channel-oblivious manipulations
(such arguments do exist in literature). It is conceivable that
some ideas such as those used in [18] might turn out to be
useful, given the particular channel structure, to establish the
doubling property.

IV. DISCUSSION

There has been some interest (for instance [11]) in using
multivariate Gaussians to improve on the Han–Kobayashi
achievable region. However the result in this note says that
such an improvement is not possible. The authors in [11] do
not consider the effect of power control using Q, and hence
their conclusion is not general enough. The need for power
control was noted as early as [4], but more recently was
a central theme of [19]. A similar result had already been
established by the authors and Costa for Z-interference and
mixed interference regimes in [14]. The argument in this note
is more general and works for all regimes; on the other hand
the proof ideas in [14] yield more insight into the single-letter
optimizers via water-filling operation.



The result in this note may be viewed as evidence (perhaps)
to the optimality of the Han–Kobayashi achievable region
for this setting. There is an inherent rotational invariance
to the optimizers of Han–Kobayashi expression, and the k-
letter Han–Kobayashi region goes to capacity. Hence it is not
inconceivable that the result in this note, along with a proof
of optimality of Gaussian distributions (along any of the lines
outlined here) would settle this long standing open problem.
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